Log in

Multi-Phase Trajectory Optimization for Alpine Skiers Using an Improved Retractable Body Model

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, an improved retractable body model (IRBM) is established, which has an advantage in simulating the flexion-and-extension motion of skier’s legs during carved turning and straight gliding. The trajectory optimization problem for the nonlinear alpine skiing system is transformed into a multi-phase optimal control (MPOC) problem. Subsequently, a constrained multi-phase trajectory optimization model is developed based on the optimal control theory, where the optimization target is to minimize the total skiing time. The optimization model is discretized by using the Radau pseudospectral method (RPM), which transcribes the MPOC problem into a nonlinear programming (NLP) problem that is then solved by SNOPT solver. Through numerical simulations, the optimization results under different constraints are obtained using MATLAB. The variation characteristics of the variables and trajectories are analyzed, and four influencing factors related to the skiing time are investigated by comparative experiments. It turns out that the small turning radius can reduce the total skiing time, the flexion-and-extension motion of legs is beneficial to skier’s performance, and the large inclination angle can shorten skier’s turning time, while the control force has a slight effect on the skiing time. The effectiveness and feasibility of the proposed models and trajectory optimization strategies are validated by simulation and experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Cai, C., Yao, X.: Dynamic analysis and trajectory optimization for the nonlinear ski-skier system. Control Eng. Pract. 114, 104868 (2021)

    Article  Google Scholar 

  2. Cai, C., Yao, X.: Trajectory optimization with constraints for alpine skiers based on multi-phase nonlinear optimal control. Front Inform. Technol. Electron. Eng. 21(10), 1521–1534 (2020)

    Article  Google Scholar 

  3. Chai, R., Savvaris, A., Tsourdos, A., Chai, S., **a, Y.: Stochastic spacecraft trajectory optimization with the consideration of chance constraints. IEEE Trans. Control Syst. Technol. 28(4), 1550–1559 (2020)

    Article  Google Scholar 

  4. Chen, L., Qi, Z.: A 2-dimensional multi rigid bodies skiing model. Multibody Syst. Dyn. 21, 91–98 (2009)

    Article  Google Scholar 

  5. Dai, C., Lefebvre, S., Yu, K.M., Geraedts, J.M.P., Wang, C.C.L.: Planning jerk-optimized trajectory with discrete time constraints for redundant robots. IEEE Trans. Autom. Sci. Eng. 17(4), 1711–1724 (2020)

    Article  Google Scholar 

  6. Dębski, R.: High-performance simulation-based algorithms for an alpine ski racer’s trajectory optimization in heterogeneous computer systems. Int. J. Appl. Math. Comput. Sci. 24(3), 551–566 (2014)

    Article  MathSciNet  Google Scholar 

  7. Demšar, I., Supej, M., Vidrih, Z., Duhovnik, J.: Development of prosthetic knee for alpine skiing. Stroj. Vestn. 57(10), 768–777 (2011)

    Article  Google Scholar 

  8. Eberle, R., Kaps, P., Oberguggenberger, M.: A multibody simulation study of alpine ski vibrations caused by random slope roughness. J. Sound Vib. 446, 225–237 (2019)

    Article  Google Scholar 

  9. Fasel, B., Spörri, J., Gilgien, M., Boffi, G., Chardonnens, J., Müller, E., Aminian, K.: Three-dimensional body and centre of mass kinematics in alpine ski racing using differential GNSS and inertial sensors. Remote Sens. 8(8), 671 (2016)

    Article  Google Scholar 

  10. Garg, D., Patterson, M., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11), 1843–1851 (2010)

    Article  MathSciNet  Google Scholar 

  11. Garg, D., Patterson, M.A., Francolin, C., Darby, C.L., Huntington, G.T., Hager, W.W., Rao, A.V.: Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method. Comput. Optim. Appl. 49, 335–358 (2011)

    Article  MathSciNet  Google Scholar 

  12. Gasbarri, P., Sabatini, M., Pisculli, A.: Dynamic modelling and stability parametric analysis of a flexible spacecraft with fuel slosh. Acta Astronaut. 127, 141–159 (2016)

    Article  Google Scholar 

  13. Gilgien, M., Spörri, J., Kröll, J., Crivelli, P., Müller, E.: Mechanics of turning and jum** and skier speed are associated with injury risk in men’s World Cup alpine skiing: a comparison between the competition disciplines. Br. J. Sports Med. 48, 742–747 (2014)

    Article  Google Scholar 

  14. Gross, D., Hauger, W., Schröder, J., Wall, W.A., Govindjee, S.: Dynamics of Rigid Bodies. In: Engineering Mechanics 3, pp. 127–207. Springer, Berlin (2011)

  15. Hébert-Losier, K., Supej, M., Holmberg, H.C.: Biomechanical factors influencing the performance of elite alpine ski racers. Sports Med. 44, 519–533 (2014)

    Article  Google Scholar 

  16. Hirano, Y.: Quickest descent line during alpine ski racing. Sport. Eng. 9, 221–228 (2006)

    Article  Google Scholar 

  17. Huntington, G.T., Benson, D., Rao, A.V.: A comparison of accuracy and computational efficiency of three pseudospectral methods. In: AIAA Guidance, Navigation, and Control Conference and Exhibit (2012)

  18. Jiang, H., Shi, K., Cai, J., Chen, L.: Trajectory planning and optimisation method for intelligent vehicle lane changing emergently. IET Intell. Transp. Syst. 12(10), 1336–1344 (2018)

    Article  Google Scholar 

  19. Kim, S.H., Lee, B., Hong, Y.D.: Stability control and turning algorithm of an alpine skiing robot. Sensors 19(17), 3664 (2019)

    Article  Google Scholar 

  20. Komissarov, S.S.: Dynamics of carving runs in alpine skiing. II. Centrifugal pendulum with a retractable leg. Sport. Biomech. 21(8), 912–939 (2022)

    Article  Google Scholar 

  21. Kono, K., Saga, N.: Development of a passive turn type skiing robot with variable height mechanism of gravitational center. J. Robot. Mechatron. 24(2), 372–378 (2012)

    Article  Google Scholar 

  22. Kröll, J., Spörri, J., Gilgien, M., Schwameder, H., Müller, E.: Sidecut radius and kinetic energy: equipment designed to reduce risk of severe traumatic knee injuries in alpine giant slalom ski racing. Br. J. Sports Med. 50, 26–31 (2016)

    Article  Google Scholar 

  23. Lan, J., Li, J.: Newton-Kantorovich/Radau pseudospectral solution to rigid spacecraft time-optimal three-axis reorientation. Adv. Space Res. 65(11), 2662–2673 (2020)

    Article  Google Scholar 

  24. Lee, J.H., Park, K.H., Ko, Y.C., Alouini, M.S.: A UAV-mounted free space optical communication: trajectory optimization for flight time. IEEE Trans. Wirel. Commun. 19(3), 1610–1621 (2020)

    Article  Google Scholar 

  25. Li, G., Ma, X., Li, Z., Li, Y.: Optimal trajectory planning strategy for underactuated overhead crane with pendulum-sloshing dynamics and full-state constraints. Nonlinear Dyn. 109(2), 815–835 (2022)

    Article  Google Scholar 

  26. Li, X., Qi, G., Zhang, L.: Time-varying formation dynamics modeling and constrained trajectory optimization of multi-quadrotor UAVs. Nonlinear Dyn. 106(4), 3265–3284 (2021)

    Article  Google Scholar 

  27. Licea, D.B., Bonilla, M., Ghogho, M., Lasaulce, S., Varma, V.S.: Communication-aware energy efficient trajectory planning with limited channel knowledge. IEEE Trans. Robot. 36(2), 431–442 (2020)

    Article  Google Scholar 

  28. Lim, W., Lee, S., Sunwoo, M., Jo, K.: Hybrid trajectory planning for autonomous driving in on-road dynamic scenarios. IEEE Trans. on Intell. Transp. Syst. 22(1), 341–355 (2021)

    Article  Google Scholar 

  29. Lind, D.A., Sanders, S.P.: Geometry of the Edged and Flexed Ski. In: The Physics of Skiing, pp. 206–207. Springer, New York (2004)

  30. Lind, D.A., Sanders, S.P.: Pum** to Increase Velocity. In: The Physics of Skiing, pp. 231–233. Springer, New York (2004)

  31. Maroński, R.: On optimal running downhill on skis. J. Biomech. 23(5), 435–439 (1990)

    Article  Google Scholar 

  32. Mu, H., Chen, H., Zhu, Y.: Vibration-energy-optimal trajectory planning for flexible servomotor systems with state constraints. IET Control Theory Appl. 13(1), 59–68 (2019)

    Article  MathSciNet  Google Scholar 

  33. Peng, H., Zhao, H., Wang, X., Li, Y.: Robust motion trajectory optimization of overhead cranes based on polynomial chaos expansion. ISA Trans. 110, 71–85 (2021)

    Article  Google Scholar 

  34. Remizov, L.P.: Optimal running on skis in downhill. J. Biomech. 13(11), 941–945 (1980)

    Article  Google Scholar 

  35. Ruan, S., Ma, Y.: Optimization of acceleration motion trajectory of SHEV based on radau pseudospectral method. IFAC PapersOnLine 52(5), 48–53 (2019)

    Article  Google Scholar 

  36. Rudakov, R., Lisovski, A., Ilyalov, O., Podgaets, R.: Optimisation of the skiers trajectory in special slalom. Proc. Eng. 2(2), 3179–3182 (2010)

    Article  Google Scholar 

  37. Spörri, J., Kröll, J., Schwameder, H., Schiefermüller, C., Müller, E.: Course setting and selected biomechanical variables related to injury risk in alpine ski racing: an explorative case study. Br. J. Sports Med. 46, 1072–1077 (2012)

    Article  Google Scholar 

  38. Supej, M., Hébert-Losier, K., Holmberg, H.C.: Impact of the steepness of the slope on the biomechanics of World Cup slalom skiers. Int. J. Sport. Physiol. Perform. 10(3), 361–368 (2015)

    Article  Google Scholar 

  39. Supej, M.: 3D measurements of alpine skiing with an inertial sensor motion capture suit and GNSS RTK system. J. Sport. Sci. 28(7), 759–769 (2010)

    Article  Google Scholar 

  40. Wang, J., Wang, J., Han, Q.L.: Receding-horizon trajectory planning for under-actuated autonomous vehicles based on collaborative neurodynamic optimization. IEEE/CAA J. Autom. Sinica 9(11), 1909–1923 (2022)

    Article  Google Scholar 

  41. Yazdani, A.M., Sammut, K., Yakimenko, O.A., Lammas, A.: Feasibility analysis of using the hp-adaptive Radau pseudospectral method for minimum-effort collision-free docking operations of AUV. Robot. Auton. Syst. 133, 103641 (2020)

    Article  Google Scholar 

  42. Zeng, F., Hu, Z., **ao, Z., Jiang, H., Zhou, S., Liu, W., Liu, D.: Resource allocation and trajectory optimization for QoE provisioning in energy-efficient UAV-enabled wireless networks. IEEE Trans. Veh. Technol. 69(7), 7634–7647 (2020)

    Article  Google Scholar 

Download references

Funding

This work has been supported by the Key Technology Research and Demonstration of National Scientific Training Base Construction of China under Grant No. 2018YFF0300800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aolan Yao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Dario Izzo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, C., Yao, X. Multi-Phase Trajectory Optimization for Alpine Skiers Using an Improved Retractable Body Model. J Optim Theory Appl 201, 1063–1088 (2024). https://doi.org/10.1007/s10957-024-02422-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-024-02422-5

Keywords

Navigation