Log in

Locally Optimal Eigenpairs of Orthogonally Decomposable Tensors: A Generalized Proof

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Orthogonally decomposable (odeco) tensors is a special class of symmetric tensors. Previous works have focused on investigating its E-eigenpairs problem, and made some theoretical achievements concerning the number and the local optimality of E-eigenpairs. However, concerning local optimality of each eigenpair, the existing work only analyzed the third-order tensor case. In this paper, we further exploit this issue for any higher-order tensors by checking second-order necessary condition of the related constrained optimization model and deducing an equivalent matrix formula criterion for local optimality identification. Finally, a generalized conclusion for local optimality of eigenpairs for odeco tensors is provided, and some simulated experiments are conducted for validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Notes

  1. http://www.math.msu.edu/\(\sim \)chenlipi/TenEig.html

  2. https://www.researchgate.net/publication/374976951_Code-JOTA-Odeco

References

  1. Anandkumar, A., Ge, R., Hsu, D., Kakade, S.M., Telgarsky, M.: Tensor decompositions for learning latent variable models. J. Mach. Learn. Res. 15(1), 2773–2832 (2014)

    MathSciNet  Google Scholar 

  2. Chang, J., Chen, Y., Qi, L.: Computing eigenvalues of large scale sparse tensors arising from a hypergraph. SIAM J. Sci. Comput. 38(6), A3618–A3643 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chen, L., Han, L., Zhou, L.: Computing tensor eigenvalues via homotopy methods. SIAM J. Matrix Anal. Appl. 37(1), 290–319 (2016). https://doi.org/10.1137/15M1010725

    Article  MathSciNet  Google Scholar 

  4. Cui, C.F., Dai, Y.H., Nie, J.: All real eigenvalues of symmetric tensors. Siam J. Matrix Anal. Appl. 35(4), 1582–601 (2014)

    Article  MathSciNet  Google Scholar 

  5. Gautier, A., Hein, M.: Tensor norm and maximal singular vectors of non-negative tensors-a Perron-Frobenius theorem, a Collatz-Wieland characterization and a generalized power method. Linear Algebra Appl. 505, 313–43 (2016)

  6. Geng, X., Ji, L., Sun, K.: Principal skewness analysis: algorithm and its application for multispectral/hyperspectral images indexing. IEEE Geosci. Remote Sens. Lett. 11(10), 1821–1825 (2014)

    Article  Google Scholar 

  7. Geng, X., Wang, L.: NPSA: nonorthogonal principal skewness analysis. IEEE Trans. Image Process. 29, 6396–6408 (2020)

  8. Hillar, C.J., Lim, L.H.: Most tensor problems are NP-hard. J. ACM (JACM) 60(6), 45 (2013)

  9. Jaffe, A., Weiss, R., Nadler, B.: Newton correction methods for computing real eigenpairs of symmetric tensors. SIAM J. Matrix Anal. Appl. 39(3), 1071–1094 (2018). https://doi.org/10.1137/17M1133312

    Article  MathSciNet  Google Scholar 

  10. Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23(3), 863–884 (2002)

    Article  MathSciNet  Google Scholar 

  11. Kolda, T.G.: Orthogonal tensor decompositions. SIAM J. Matrix Anal. Appl. 23(1), 243–255 (2001)

    Article  MathSciNet  Google Scholar 

  12. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  13. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011)

    Article  MathSciNet  Google Scholar 

  14. Kolda, T.G., Mayo, J.R.: An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM J. Matrix Anal. Appl. 35(4), 1095–1124 (2014)

    Article  MathSciNet  Google Scholar 

  15. Kruskal, J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18(2), 95–138 (1977)

    Article  MathSciNet  Google Scholar 

  16. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A Multilinear singular value decomposition (2000)

  17. Li, G., Qi, L., Yu, G.: The z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Numer. Linear Algebra Appl. 20(6), 1001–1029 (2013)

    Article  MathSciNet  Google Scholar 

  18. Li, J., Usevich, K., Comon, P.: Globally convergent jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization. SIAM J. Matrix Anal. Appl. 39(1), 1–22 (2018). https://doi.org/10.1137/17M1116295

    Article  MathSciNet  Google Scholar 

  19. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: Computational Advances in Multi-Sensor Adaptive Processing, 2005 1st IEEE International Workshop on, pp. 129–132. IEEE (2005)

  20. Liqun, Q.I., Wenyu, S., Yiju, W.: Numerical multilinear algebra and its applications. Front. Math. China 2(4), 501–526 (2007)

    Article  MathSciNet  Google Scholar 

  21. Mu, C., Hsu, D.J., Goldfarb, D.: Successive rank-one approximations for nearly orthogonally decomposable symmetric tensors. SIAM J. Matrix Anal. Appl. 36(4), 1638–1659 (2015). https://doi.org/10.1137/15M1010890

    Article  MathSciNet  Google Scholar 

  22. Muller, T., Robeva, E., Usevich, K.: Robust eigenvectors of symmetric tensors. SIAM J. Matrix Anal. Appl. 43(4), 1784–1805 (2022). https://doi.org/10.1137/21m1462052

    Article  MathSciNet  Google Scholar 

  23. Nocedal, J., Wright, S.J.: Numerical Optimization(1999)

  24. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)

    Article  MathSciNet  Google Scholar 

  25. Qi, L.: D-eigenvalues of diffusion Kurtosis tensor. J. Comput. Appl. Math. 221(1), 150–157 (2008)

  26. Qi, L., Teo, K.L.: Multivariate polynomial minimization and its application in signal processing. J. Global Optim. 26(4), 419–433 (2003)

    Article  MathSciNet  Google Scholar 

  27. Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118(2), 301–316 (2009)

    Article  MathSciNet  Google Scholar 

  28. Qi, L., Zhang, X., Chen, Y.: A tensor rank theory, full rank tensors and the sub-full-rank property. CoRR abs/2004.11240 (2020). arxiv:2004.11240

  29. Robeva, E.: Orthogonal decomposition of symmetric tensors. SIAM J. Matrix Anal. Appl. 37(1), 86–102 (2016). https://doi.org/10.1137/140989340

    Article  MathSciNet  Google Scholar 

  30. Wang, L., Geng, X.: The real eigenpairs of symmetric tensors and its application to independent component analysis. IEEE Trans. Cybernet. (2021). https://doi.org/10.1109/TCYB.2021.3055238

  31. Wang, Y., Qi, L.: On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors. Numer. Linear Algebra Appl. 14(6), 503–519 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was partially supported by National Natural Science Fund of China (62271090).

Author information

Authors and Affiliations

Authors

Contributions

XG/LZ: Conceptualization, Methodology. LW: Writing - original draft.

Corresponding author

Correspondence to Lei Wang.

Additional information

Communicated by Alexander Vladimirovich Gasnikov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Geng, X. & Zhang, L. Locally Optimal Eigenpairs of Orthogonally Decomposable Tensors: A Generalized Proof. J Optim Theory Appl 201, 199–220 (2024). https://doi.org/10.1007/s10957-024-02390-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-024-02390-w

Keywords

Mathematics Subject Classification

Navigation