Log in

Second-Order Enhanced Optimality Conditions and Constraint Qualifications

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study second-order necessary optimality conditions for smooth nonlinear programming problems. Employing the second-order variational analysis and generalized differentiation, under the weak constant rank (WCR) condition, we derive an enhanced version of the classical weak second-order Fritz–John condition which contains some new information on multipliers. Based on this enhanced weak second-order Fritz–John condition, we introduce the weak second-order enhanced Karush–Kuhn–Tucker condition and propose some associated second-order constraint qualifications. Finally, using our new second-order constraint qualifications, we establish new sufficient conditions for the existence of a Hölder error bound condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadie, J.M.: On the Kuhn–Tucker Theorem. Nonlinear Programming (NATO Summer School, Menton, 1964) pp. 19–36 (1967)

  2. Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: Second-order negative-curvature methods for box-constrained and general constrained optimization. Comput. Optim. Appl. 45(2), 209–236 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Andreani, R., Echagüe, C.E., Schuverdt, M.L.: Constant-rank condition and second-order constraint qualification. J. Optim. Theory Appl. 146(2), 255–266 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization 60(5), 627–641 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Andreani, R., Martínez, J.M., Schuverdt, M.L.: On the relation between constant positive linear dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125(2), 473–485 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.: Two new weak constraint qualifications and applications. SIAM J. Optim. 22(3), 1109–113 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. 135(1–2, Ser. A), 255–273 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Andreani, R., Haeser, G., Ramos, A., Silva, P.: A second-order sequential optimality condition associated to the convergence of optimization algorithms. IMA J. Numer. Anal. 37(4), 1902–1929 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Andreani, R., Martínez, J.M., Ramos, A., Silva, P.: A cone-continuity constraint qualification and algorithm consequences. SIAM J. Optim. 26(1), 96–110 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Andreani, R., Martínez, J.M., Schuverdt, M.L.: On second-order optimality conditions for nonlinear programming. Optimization 56(5–6), 529–542 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Arutyunov, A.: Optimality Conditions: Abnormal and Degenerate Problems. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  12. Arutyunov, A.: Second-Order Conditions in Extremal Problems The Abnormal Points. Trans. Am. Math. Soc. 350(11), 4341–4365 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Auslender, A.: Penalty methods for computing points that satisfy second-order necessary conditions. Math. Program. 17, 229–238 (1979)

    MathSciNet  MATH  Google Scholar 

  14. Bai, K., Ye, Jane J., Zhang, J.: Directional Quasi-/Pseudo-Normality as Sufficient Conditions for Metric Subregularity. SIAM J. Optim. 29(4), 2625–2649 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Behling, R., Haeser, G., Ramos, A., Viana, D.S.: On a conjecture in second-order optimality conditions. J. Optim. Theory Appl. 176(3), 625–633 (2018). Extended version: ar**v:1706.07833

  16. Ben-Tal, A.: Second-order and related extremality conditions in nonlinear programming. J. Optim. Theory Appl. 31(2), 143–165 (1980)

    MathSciNet  MATH  Google Scholar 

  17. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont, MA (1999)

    MATH  Google Scholar 

  18. Bertsekas, D.P., Ozdaglar, A.E.: Pseudonormality and a Lagrange multiplier theory for constrained optimization. J. Optim. Theory Appl. 114(2), 287–343 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Bertsekas, D.P., Ozdaglar, A.E.: The relation between pseudonormality and quasiregularity in constrained optimization. Optim. Methods Softw. 19(5), 493–506 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Bertsekas, D.P., Ozdaglar, A.E., Tseng, P.: Enhanced Fritz John conditions for convex programming. SIAM J. Optim. 16(3), 766–797 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Bertsekas, D.P., Nedic, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont, MA (2003)

    MATH  Google Scholar 

  22. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)

    MATH  Google Scholar 

  23. Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)

    MATH  Google Scholar 

  24. Burke, J.V.: An exact penalization viewpoint of constrained optimization. SIAM J. Control. Optim. 9, 968–998 (1991)

    MathSciNet  MATH  Google Scholar 

  25. Clarke, F.H.: A new approach to Lagrange multipliers. Math. Oper. Res. 1, 165–174 (1976)

    MathSciNet  MATH  Google Scholar 

  26. Coleman, T.F., Liu, J., Yuan, W.: A new trust-region algorithm for equality constrained optimization. Comput. Optim. Appl. 21(2), 177–199 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Dennis, J.E., El-Alem, M., Maciel, M.C.: A global convergence theory for general trust-region-based algorithms for equality constrained optimization. SIAM J. Optim. 7(1), 177–207 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Di Pillo, G., Lucidi, S., Palagi, L.: Convergence to second-order stationary points of a primal-dual algorithm model for nonlinear programming. Math. Oper. Res. 30(4), 897–915 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Dubovitskii, A.Y., Milyutin, A.A.: Extremum problems in the presence of restrictions. USSR Comput. Math. Math. Phys. 5(3), 1–80 (1965)

    MATH  Google Scholar 

  30. Gfrerer, H., Klatte, D.: Lipschitz and Hölder stability of optimization problems and generalized equations. Math. Program. 158(1–2(Ser. A)), 35–75 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Gill, P.E., Kungurtsev, V., Robinson, D.P.: A stabilized SQP method: global convergence. IMA J. Numer. Anal. 37(1), 407–443 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Guignard, M.: Generalized Kuhn–Tucker conditions for mathematical programming problems in a Banach space. SIAM J. Control. 7, 232–241 (1969)

    MathSciNet  MATH  Google Scholar 

  33. Gould, F.J., Tolle, J.W.: A necessary and sufficient qualification for constrained optimization. SIAM J. Appl. Math. 20, 164–172 (1971)

    MathSciNet  MATH  Google Scholar 

  34. Hestenes, M.R.: Optimization Theory: The Finite Dimensional Case. Krieger Publishing, Malabar, FL (1975)

    MATH  Google Scholar 

  35. Izmailov, A., Solodov, M.: Error bounds for 2-regular map**s with Lipschitzian derivatives and their applications. Math. Program. 89, 413–435 (2001)

    MathSciNet  MATH  Google Scholar 

  36. Janin, R.: Directional derivative of the marginal function in nonlinear programming. Math. Program. Stud. No. 21, 110–126 (1984)

    MathSciNet  MATH  Google Scholar 

  37. John, F.: Extremum Problems with Inequalities as Subsidiary Conditions. Traces and Emergence of Nonlinear Programming, pp. 198–215. Springer, Basel (2014)

    Google Scholar 

  38. Karush, W.:Minima of Functions of Several Variables with Inequalities as Side Conditions. Master’s thesis, University of Chicago (1939)

  39. Kruger, A.Y., López, M.A., Yang, X., Zhu, J.: Hölder error bounds and Hölder calmness with applications to convex semi-infinite optimization. Set-Valued Var. Anal. 27(4), 995–1023 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, pp. 481–492 (1951)

  41. Kummer, B.: Inclusions in general spaces: Hölder stability, solution schemes and Ekelands principle. J. Math. Anal. Appl. 358, 327–344 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Levitin, E.S., Milyutin, A.A., Osmolovskii, N.P.: Conditions of high order for a local minimum in problems with constraints. Russ. Math. Surv. 33, 97–168 (1978)

    MATH  Google Scholar 

  43. Mangasarian, O.L., Fromovitz, S.: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)

    MathSciNet  MATH  Google Scholar 

  44. Meng, K.W., Yang, X.Q.: Optimality conditions via exact penalty functions. SIAM J. Optim. 20(6), 3208–3231 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Meng, K.W., Yang, X.Q.: First- and second-order necessary conditions via exact penalty functions. J. Optim. Theory Appl. 165(3), 720–752 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Minchenko, L., Turakanov, A.: On error bounds for quasinormal programs. J. Optim. Theory Appl. 148(3), 571–579 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Basic Theory. Springer, Berlin (2006)

    Google Scholar 

  48. Mordukhovich, B.S.: Variational Analysis and Applications. Springer, Cham (2018)

    MATH  Google Scholar 

  49. Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM Rev. 35(2), 183–238 (1993)

    MathSciNet  MATH  Google Scholar 

  50. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

    MATH  Google Scholar 

  51. Yang, X.Q., Meng, Z.Q.: Lagrange multipliers and calmness conditions of order \(p\). Math. Oper. Res. 32(1), 95–101 (2007)

    MathSciNet  MATH  Google Scholar 

  52. Ye, Jane J., Ye, X.Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22(4), 977–997 (1997)

    MathSciNet  MATH  Google Scholar 

  53. Ye, Jane J., Zhang, J.: Enhanced Karush–Kuhn–Tucker condition and weaker constraint qualification. Math. Program. 139(1–2(Ser. B)), 353–381 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their helpful suggestions and comments. The first author’s work was partially supported by the NSFC Grant 12201531 and the Hong Kong Research Grants Council PolyU153036/22p. The third author’s work was partially supported by the NSFC Grant 12222106, the Shenzhen Science and Technology Program Grant RCYX20200714114700072, and the Guangdong Basic and Applied Basic Research Foundation Grant 2022B1515020082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ** Zhang.

Additional information

Communicated by Michel Thera.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The alphabetical order of the authors indicates their equal contributions to the paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, K., Song, Y. & Zhang, J. Second-Order Enhanced Optimality Conditions and Constraint Qualifications. J Optim Theory Appl 198, 1264–1284 (2023). https://doi.org/10.1007/s10957-023-02276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-023-02276-3

Keywords

Mathematics Subject Classification

Navigation