Log in

From Coalescing Random Walks on a Torus to Kingman’s Coalescent

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Let \({\mathbb T}^d_N\), \(d\ge 2\), be the discrete d-dimensional torus with \(N^d\) points. Place a particle at each site of \({\mathbb T}^d_N\) and let them evolve as independent, nearest-neighbor, symmetric, continuous-time random walks. Each time two particles meet, they coalesce into one. Denote by \(C_N\) the first time the set of particles is reduced to a singleton. Cox (Ann Probab 17:1333–1366, 1989) proved the existence of a time-scale \(\theta _N\) for which \(C_N/\theta _N\) converges to the sum of independent exponential random variables. Denote by \(Z^N_t\) the total number of particles at time t. We prove that the sequence of Markov chains \((Z^N_{t\theta _N})_{t\ge 0}\) converges to the total number of partitions in Kingman’s coalescent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D., Fill, J.A.: Reversible Markov chains and random walks on graphs. http://www.stat.berkeley.edu/~aldous/RWG/book.html (2001)

  2. Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140, 1065–1114 (2010)

    Article  MathSciNet  Google Scholar 

  3. Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains II. J. Stat. Phys. 149, 598–618 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  4. Chen, Y.T., Choi, J., Cox, J.T.: On the convergence of densities of finite voter models to the Wright-Fisher diffusion. Ann. Inst. H. Poincaré Probab. Stat. 52, 286–322 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. Cooper, C., Frieze, A., Radzik, T.: Multiple random walks in random regular graphs. SIAM J. Discret. Math. 23, 1738–1761 (2009)

    Article  MathSciNet  Google Scholar 

  6. Cox, J.T.: Coalescing random walks and voter model consensus times on the torus in \(Z^d\). Ann. Probab. 17, 1333–1366 (1989)

    Article  MathSciNet  Google Scholar 

  7. Durrett, R.: Some features of the spread of epidemics and information on a random graph. Proc. Nat. Acad. Sci. USA 107, 4491–4498 (2010)

    Article  ADS  Google Scholar 

  8. Heuer, B., Sturm, A.: On spatial coalescents with multiple mergers in two dimensions. Theor. Popul. Biol. 87, 90–104 (2013)

    Article  Google Scholar 

  9. Jara, M., Landim, C., Teixeira, A.: Quenched scaling limits of trap models. Ann. Probab. 39, 176–223 (2011)

    Article  MathSciNet  Google Scholar 

  10. Kingman, J.F.C.: Coalescent. Stoch. Proc. Appl. 13, 235–248 (1982)

    Article  MathSciNet  Google Scholar 

  11. Kolokoltsov, V.N.: Markov Processes, Semigroups and Generators. De Gruyter Studies in Mathematics, vol. 38. De Gruyter, Berlin (2011)

    Google Scholar 

  12. Lawler, G.F.: Intersections of Random Walks. Modern Birkhäuser Classics. Birkhäuser, Basel (1991)

    Book  Google Scholar 

  13. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  14. Limic, V., Sturm, A.: The spatial \(\Lambda \)-coalescent. Elect. J. Probab. 11, 363–393 (2006)

    Article  MathSciNet  Google Scholar 

  15. Oliveira, R.I.: On the coalescence time of reversible random walks. Trans. Am. Math. Soc. 364, 2109–2128 (2012)

    Article  MathSciNet  Google Scholar 

  16. Oliveira, R.I.: Mean field conditions for coalescing random walks. Ann. Probab. 41, 3420–3461 (2013)

    Article  MathSciNet  Google Scholar 

  17. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Grundlehren der mathematischen Wissenschaften, vol. 233. Springer, Berlin (1979)

    Google Scholar 

  18. Zähle, I., Cox, J.T., Durrett, R.: The step** stone model. II: genealogies and the infinite sites model. Ann. Appl. Probab. 15, 671–699 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Landim.

Additional information

Communicated by Abhishek Dhar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltrán, J., Chavez, E. & Landim, C. From Coalescing Random Walks on a Torus to Kingman’s Coalescent. J Stat Phys 177, 1172–1206 (2019). https://doi.org/10.1007/s10955-019-02415-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02415-z

Keywords

Mathematics Subject Classification

Navigation