Log in

An Extremal Property of the Hexagonal Lattice

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We describe an extremal property of the hexagonal lattice \(\Lambda \subset \mathbb {R}^2\). Let p denote the circumcenter of its fundamental triangle (a so-called deep hole) and let \(A_r\) denote the set of lattice points that are at distance r from p

$$\begin{aligned} A_r = \left\{ \lambda \in \Lambda : \Vert \lambda - p \Vert = r\right\} . \end{aligned}$$

If \(\Gamma \) is a small perturbation of \(\Lambda \) in the space of lattices with fixed density and \(C_r\) denotes the set of points in \(A_r\) shifted to the new lattice, then

$$\begin{aligned} \sum _{\mu \in C_r}{ \Vert p - \mu \Vert } - \sum _{\lambda \in A_r}{ \Vert p - \lambda \Vert } > rsim r \, \# A_r \, d(\Lambda , \Gamma )^2, \end{aligned}$$

where \(d(\Lambda , \Gamma )\) denotes the distance between the lattices: the hexagonal lattice has the property that “far away points are closer than they are for nearby lattices”. This has implications in the calculus of variations: assume

$$\begin{aligned} g_\Gamma (z) = \sum _{\gamma \in \Gamma } f( \Vert z - \gamma \Vert ) \quad \text { satisfies } \quad \min _{z \in \mathbb {R}^2} g_\Lambda (z) = g_\Lambda (p). \end{aligned}$$

For a certain class of compactly supported functions f, the hexagonal lattice \(\Lambda \) is then a strict local maximizer of

$$\begin{aligned} \max _{\Gamma } \min _{z \in \mathbb {R}^2} \sum _{\gamma \in \Gamma }{f( \Vert z - \gamma \Vert )}, \end{aligned}$$

where the maximum runs over all lattices of fixed density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baernstein II, A.: Landau’s constant, and extremal problems involving discrete subsets of \(\mathbb{C}\). In: Havin, V.P., Nikolski, N.K. (eds.) Linear and Complex Analysis Problem Book 3, Part 2. Lecture Notes in Mathematics, Chapter 18, vol. 1574, pp. 404–407. Springer, Berlin (1994)

  2. Baernstein II, A.: A minimum problem for heat kernels of flat tori. In: Extremal Riemann Surfaces (San Francisco. CA, 1995). Contemporary Mathematics, vol. 201, pp. 227–243. American Mathematical Society, Providence, RI (1997)

  3. Baernstein II, A., Vinson, J.P.: Local minimality results related to the Bloch and Landau constants. In: Duren, P., Heinonen, J., Osgood, B., Palka, B. (eds.) Quasiconformal Map**s and Analysis: A Collection of Papers Honoring F.W. Gehring, pp 55–89. Springer, New York (1998)

    Chapter  MATH  Google Scholar 

  4. Betermin, L.: Two-dimensional theta functions and crystallization among Bravais lattices. SIAM J. Math. Anal. 48(5), 3236–3269 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Betermin, L., Petrache, M.: Dimension reduction techniques for the minimization of theta functions on lattices. J. Math. Phys. 58, 071902 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Betermin, L.: Minimal soft lattice theta functions, preprint. ar**v:1809.00473

  7. Betermin, L.: Minimizing lattice structures for Morse potential energy in two and three dimensions, preprint. ar**v:1901.08957 (2019)

  8. Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2(2), 225–306 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borwein, J.M., Borwein, P.B.: A cubic counterpart of Jacobi’s identity and the AGM. Trans. Am. Math. Soc. 332(2), 691–701 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohn, H., Kumar, A., Miller, S.D., Radchenko, D., Viazovska, M.S.: The sphere packing problem in dimension 24. Ann. Math. 187(3), 1035–1068 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Cohn, H., Kumar, A., Miller, S.D., Radchenko, D., Viazovska, M.S.: Universal optimality of \(E_8\) and Leech lattices and interpolation formulas. ar**v:1902:05438 (2019)

  13. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, 3rd edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  14. Faulhuber, M.: Extremal Bounds of Gaussian Gabor Frames and Properties of Jacobi’s Theta Functions. Doctoral thesis, University of Vienna (2016)

  15. Faulhuber, M., Steinerberger, S.: Optimal Gabor frame bounds for separable lattices and estimates for Jacobi theta functions. J. Math. Anal. Appl. 445(1), 407–422 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Faulhuber, M.: Minimal frame operator norms via minimal theta functions. J. Fourier Anal. Appl. 24(2), 545–559 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hales, T.: A proof of the Kepler conjecture. Ann. Math. Second Ser 162(3), 1065–1185 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Montgomery, H.: Minimal theta functions. Glasg. Math. J. 30(1), 75–85 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of laplacians. J. Funct. Anal. 80(1), 148–211 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Radin, C.: The ground state for soft disks. J. Stat. Phys. 26(2), 365–373 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  21. Rogers, C.A.: Packing and Covering. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 54. Cambridge University Press, New York (1964)

    MATH  Google Scholar 

  22. Serre, J.P.: A Course in Arithmetic. Graduate Texts in Mathematics, vol. 7. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  23. Steinerberger, S.: A geometric uncertainty principle with applications to Pleijel’s estimate. Annales Henri Poincare 15, 2299–2319 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Strohmer, T., Beaver, S.: Optimal OFDM design for time-frequency dispersive channels. IEEE Trans. Commun. 51(7), 1111–1122 (2003)

    Article  Google Scholar 

  25. Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Viazovska, M.S.: The sphere packing problem in dimension 8. Ann. Math. 187(3), 991–1015 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The funding was provided by Österreichischen Akademie der Wissenschaften (Grant No. J4100-N32), Division of Mathematical Sciences (Grant No. 1763179) and also by Alfred P. Sloan Foundation (Grant No. #1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Steinerberger.

Additional information

Communicated by Alessandro Giuliani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M.F. is supported by the Erwin Schrödinger Program of the Austrian Science Fund (FWF): J4100-N32. S.S. is supported by the NSF (DMS-1763179) and the Alfred P. Sloan Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faulhuber, M., Steinerberger, S. An Extremal Property of the Hexagonal Lattice. J Stat Phys 177, 285–298 (2019). https://doi.org/10.1007/s10955-019-02368-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02368-3

Keywords

Mathematics Subject Classification

Navigation