Log in

[(EtO)3Si(CH2)3N+H3][CH3COO] as Basic Ionic Liquid Catalyst Promoted Green Synthesis of Benzo[a]pyrano[2,3-c]phenazine Derivatives in Homogenous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

An efficient, one-pot quantitative procedure for the preparation of benzo[a]pyrano[2,3-c]phenazine derivatives from four-component condensation reaction of 2-hydroxynaphthalene-1,4-dione, benzene-1,2-diamine, aromatic aldehydes, and malononitrile in the presence of [(EtO)3Si(CH2)3N+H3][CH3COO] as basic ionic liquid as catalyst in homogenous solution under solvent-free conditions at 90 °C is described. Simple procedure, high yields, short reaction times, and an environmentally benign method are advantages of this protocol. The [(EtO)3Si(CH2)3N+H3][CH3COO] can be recovered and reused several times without loss of its activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2.
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available in the supplementary material of this article.

References

  1. Calvo-Flores, F.G.: Sustainable chemistry metrics. Chemsuschem 2, 905–919 (2009). https://doi.org/10.1002/cssc.200900128

    Article  CAS  PubMed  Google Scholar 

  2. Wakai, C., Oleinikova, A., Weingärtner, H.: Reply to “Comment on ‘how polar are ionic liquids? determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave spectroscopy.’” J. Phys. Chem. B 110, 5824 (2006). https://doi.org/10.1021/jp0601973

    Article  CAS  Google Scholar 

  3. Chen, Y., Han, X., Liu, Z., Li, Y., Sun, H., Wang, H., Wang, J.: Thermal decomposition and volatility of ionic liquids: factors, evaluation and strategies. J. Mol. Liq. 366, 120336 (2022). https://doi.org/10.1016/j.molliq.2022.120336

    Article  CAS  Google Scholar 

  4. Ghorbani, M., Simone, M.I.: Develo** new inexpensive room-temperature ionic liquids with high thermal stability and a greener synthetic profile. ACS Omega 5, 12637–12648 (2020). https://doi.org/10.1021/acsomega.9b04091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Niedermaier, I., Kolbeck, C., Taccardi, N., Schulz, P.S., Li, J., Drewello, T., Wasserscheid, P., Steinrück, H.P., Maier, F.: Organic reactions in ionic liquids studied by in situ XPS. ChemPhysChem 13, 1725–1735 (2012). https://doi.org/10.1002/cphc.201100965

    Article  CAS  PubMed  Google Scholar 

  6. Gao, Y., Arritt, S.W., Twamley, B., Shreeve, J.M.: Guanidinium-based ionic liquids. Inorg. Chem.. Chem. 44, 1704–1712 (2005). https://doi.org/10.1021/ic048513k

    Article  CAS  Google Scholar 

  7. Kirchhecker, S., Esposito, D.: Amino acid based ionic liquids: a green and sustainable perspective. Curr. Opin. Green Sustain. Chem. 2, 28–33 (2016). https://doi.org/10.1016/j.cogsc.2016.09.001

    Article  Google Scholar 

  8. Yunus, N.M., Mutalib, M.I.A., Man, Z., Bustam, M.A., Murugesan, T.: Solubility of CO2 in pyridinium based ionic liquids. Chem. Eng. J. 189–190, 94–100 (2012). https://doi.org/10.1016/j.cej.2012.02.033

    Article  CAS  Google Scholar 

  9. Chen, X., Liu, G., Yuan, S., Asumana, C., Wang, W., Yu, G.: Extractive desulfurization of fuel oils with thiazolium-based ionic liquids. Sep. Sci. Technol. 47, 819–826 (2012). https://doi.org/10.1080/01496395.2011.637281

    Article  CAS  Google Scholar 

  10. Fredlake, C.P., Crosthwaite, J.M., Hert, D.G., Aki, S.N.V.K., Brennecke, J.F.: Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 49, 954–964 (2004). https://doi.org/10.1021/je034261a

    Article  CAS  Google Scholar 

  11. Sanghi, S., Willett, E., Versek, C., Tuominen, M., Coughlin, E.B.: Physicochemical properties of 1,2,3-triazolium ionic liquids. RSC Adv. 2, 848–853 (2012). https://doi.org/10.1039/c1ra00286d

    Article  ADS  CAS  Google Scholar 

  12. Greaves, T.L., Drummond, C.J.: ChemInform abstract: protic ionic liquids: properties and applications. ChemInform 39, 206–237 (2008). https://doi.org/10.1002/chin.200818249

    Article  Google Scholar 

  13. Bienaymé, H., Hulme, C., Oddon, G., Schmitt, P.: Maximizing synthetic efficiency: multi-component transformations lead the way. Chem. A Eur. J. 6, 3321–3329 (2000). https://doi.org/10.1002/1521-3765(20000915)6:18%3c3321::AID-CHEM3321%3e3.0.CO;2-A

    Article  Google Scholar 

  14. Laursen, J.B., Nielsen, J.: Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 104, 1663–1685 (2004). https://doi.org/10.1021/cr020473j

    Article  CAS  PubMed  Google Scholar 

  15. Borrero, N.V., Bai, F., Perez, C., Duong, B.Q., Rocca, J.R., **, S., Huigens, R.W.: Phenazine antibiotic inspired discovery of potent bromophenazine antibacterial agents against Staphylococcus aureus and Staphylococcus epidermidis. Org. Biomol. Chem.Biomol. Chem. 12, 881–886 (2014). https://doi.org/10.1039/c3ob42416b

    Article  CAS  Google Scholar 

  16. Hu, L., Chen, X., Han, L., Zhao, L., Miao, C., Huang, X., Chen, Y., Li, P., Li, Y.: Two new phenazine metabolites with antimicrobial activities from soil-derived Streptomyces species. J. Antibiot.Antibiot. 72, 574–577 (2019). https://doi.org/10.1038/s41429-019-0163-2

    Article  CAS  Google Scholar 

  17. Verma, K., Tailor, Y.K., Khandelwal, S., Agarwal, M., Rushell, E., Kumari, Y., Awasthi, K., Kumar, M.: An efficient and environmentally sustainable domino protocol for the synthesis of structurally diverse spiroannulated pyrimidophenazines using erbium doped TiO2 nanoparticles as a recyclable and reusable heterogeneous acid catalyst. RSC Adv. 8, 30430–30440 (2018). https://doi.org/10.1039/c8ra04919j

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guttenberger, N., Blankenfeldt, W., Breinbauer, R.: Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg. Med. Chem.. Med. Chem. 25, 6149–6166 (2017). https://doi.org/10.1016/j.bmc.2017.01.002

    Article  CAS  Google Scholar 

  19. Low, Z.Y., Yip, A.J.W., Lal, S.K.: Repositioning ivermectin for covid-19 treatment: molecular mechanisms of action against SARS-CoV-2 replication. Biochim. Biophys. Acta Mol. Basis Dis. 1868, 166294 (2022). https://doi.org/10.1016/j.bbadis.2021.166294

    Article  CAS  PubMed  Google Scholar 

  20. Rhee, H.K., Yoo, J.H., Lee, E., Kwon, Y.J., Seo, H.R., Lee, Y.S., Choo, H.Y.P.: Synthesis and cytotoxicity of 2-phenylquinazolin-4(3H)-one derivatives. Eur. J. Med. Chem. 46, 3900–3908 (2011). https://doi.org/10.1016/j.ejmech.2011.05.061

    Article  CAS  PubMed  Google Scholar 

  21. Le-Nhat-Thuy, G., Dang Thi, T.A., Nguyen Thi, Q.G., Hoang Thi, P., Nguyen, T.A., Nguyen, H.T., Nguyen Thi, T.H., Nguyen, H.S., Nguyen, T.: Van: synthesis and biological evaluation of novel benzo[a]pyridazino[3,4-c]phenazine derivatives. Bioorg. Med. Chem. Lett.. Med. Chem. Lett. 43, 128054 (2021). https://doi.org/10.1016/j.bmcl.2021.128054

    Article  CAS  Google Scholar 

  22. Shirzaei, F., Shaterian, H.R.: [(EtO)3Si(CH2)3NH3+][CH3COO] as a novel basic ionic liquid catalyzed green synthesis of new 2-(phenylsulfonyl)-1H-benzo[a]pyrano[2,3-c]phenazin-3-amine derivatives. J. Mol. Struct.Struct. 1256, 132558 (2022). https://doi.org/10.1016/j.molstruc.2022.132558

    Article  CAS  Google Scholar 

  23. Shirzaei, F., Shaterian, H.R.: Basic ionic liquid, 2-hydroxyethylammonium formate, catalyzed one-pot synthesis of novel 2-(phenylsulfonyl)-1H-benzo[a]pyrano[2,3-c]phenazin-3-amine derivatives. Res. Chem. Intermed.Intermed. 48, 751–770 (2022). https://doi.org/10.1007/s11164-021-04627-z

    Article  CAS  Google Scholar 

  24. Shaterian, H.R., Moradi, F., Mohammadnia, M.: Nano copper(II) oxide catalyzed four-component synthesis of functionalized benzo[a]pyrano[2,3-c]phenazine derivatives. Comptes Rendus Chim. 15, 1055–1059 (2012). https://doi.org/10.1016/j.crci.2012.09.012

    Article  CAS  Google Scholar 

  25. Shaterian, H.R., Mohammadnia, M.: Mild basic ionic liquid catalyzed four component synthesis of functionalized benzo[a]pyrano[2,3-c]phenazine derivatives. J. Mol. Liq. 177, 162–166 (2013). https://doi.org/10.1016/j.molliq.2012.11.006

    Article  CAS  Google Scholar 

  26. Shaabani, A., Ghadari, R., Arabieh, M.: Synthesis of a new library of pyrano-phenazine derivatives via a novel three-component protocol. Helv. Chim. Acta. Chim. Acta 97, 228–236 (2014). https://doi.org/10.1002/hlca.201300006

    Article  CAS  Google Scholar 

  27. Tabibian, M., Mohebat, R., Tabatabaee, M.: A novel one-pot and rapid synthesis of polyfunctionalized benzo[a]pyrimido[5′,4′:5,6]pyrido[2,3-c]phenazine derivatives under microwave irradiation. Turkish J. Chem. 42, 1008–1017 (2018). https://doi.org/10.3906/kim-1710-13

    Article  CAS  Google Scholar 

  28. Naeimi, H., Zarabi, M.F.: Multisulfonate hyperbranched polyglycerol functionalized graphene oxide as an efficient reusable catalyst for green synthesis of benzo[a]pyrano-[2,3-c]phenazines under solvent-free conditions. RSC Adv. 9, 7400–7410 (2019). https://doi.org/10.1039/C8RA10180A

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hasaninejad, A., Firoozi, S.: One-pot, sequential four-component synthesis of benzo[c]pyrano[3,2-a]phenazine, bis-benzo[c]pyrano[3,2-a]phenazine and oxospiro benzo[c]pyrano[3,2-a]phenazine derivatives using 1,4-diazabicyclo[2.2.2]octane (DABCO) as an efficient and reusable solid bas. Mol. Divers. 17, 499–513 (2013). https://doi.org/10.1007/s11030-013-9446-x

    Article  CAS  PubMed  Google Scholar 

  30. Yazdani-elah-abadi, A., Razeghi, M., Shams, N.: Fulvic acid: an efficient and green catalyst for the one-pot four-component domino synthesis of benzo[a]phenazine annulated heterocycles in aqueous medium. Org. Prep. Proced. Int.Proced. Int. 52, 48–55 (2020). https://doi.org/10.1080/00304948.2019.1697608

    Article  CAS  Google Scholar 

  31. Marsh, K.N., Boxall, J.A., Lichtenthaler, R.: Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib.Equilib. 219, 93–98 (2004). https://doi.org/10.1016/j.fluid.2004.02.003

    Article  CAS  Google Scholar 

  32. Dashteh, M., Safaiee, M., Baghery, S., Zolfigol, M.A.: Application of cobalt phthalocyanine as a nanostructured catalyst in the synthesis of biological henna-based compounds. Appl. Organomet. Chem.Organomet. Chem. 33, 1–14 (2019). https://doi.org/10.1002/aoc.4690

    Article  CAS  Google Scholar 

  33. Safaei-Ghomi, J., Kareem Abbas, A., Shahpiri, M.: Synthesis of imidazoles promoted by H3PW12O40-amino-functionalized CdFe12O19@SiO2 nanocomposite. Nanocomposites 6, 149–157 (2020). https://doi.org/10.1080/20550324.2020.1858246

    Article  CAS  Google Scholar 

  34. Ghorbani, A., Masoud, C., Lotfi, M.: Synthesis and characterization of spinel FeAl2O4 (hercynite) magnetic nanoparticles and their application in multicomponent reactions. Res. Chem. Intermed.Intermed. 4, 5705–5723 (2019). https://doi.org/10.1007/s11164-019-03930-0

    Article  CAS  Google Scholar 

  35. Nikoorazm, M., Khanmoradi, M.: Application of Cu(II)-Guanine complexes anchored on SBA-15 and MCM-41 as efficient nanocatalysts for one-pot, four-component domino synthesis of phenazine derivatives and investigation of their antimicrobial behavior. Catal. Lett.. Lett. 150, 2823–2840 (2020). https://doi.org/10.1007/s10562-020-03185-0

    Article  CAS  Google Scholar 

Download references

Funding

We are thankful to the University of Sistan and Baluchestan Research Council for the partial support of this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by FS, and HRS.

Corresponding author

Correspondence to Hamid Reza Shaterian.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3520 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirzaei, F., Shaterian, H.R. [(EtO)3Si(CH2)3N+H3][CH3COO] as Basic Ionic Liquid Catalyst Promoted Green Synthesis of Benzo[a]pyrano[2,3-c]phenazine Derivatives in Homogenous Solution. J Solution Chem 53, 328–340 (2024). https://doi.org/10.1007/s10953-023-01332-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01332-w

Keywords

Navigation