Log in

Study on the Conductivities of Pure and Aqueous Bromide-Based Ionic Liquids at Different Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Electrical conductivities were measured for the pure ionic liquids [C6mim][Br] (1-hexyl-3-methylimidazolium bromide) and [C8mim][Br] (1-octyl-3-methylimidazolium bromide) at 0.1 MPa from 293.15 to 333.15 K. Conductivity measurements were also made for the binary water + [C6mim][Br] and water + [C8mim][Br] systems and their ternary water + [C6mim][Br] + [C8mim][Br] system at 0.1 MPa and 293.15, 298.15, and 303.15 K. The conductivity data of the pure ionic liquids were correlated by the VFT (Vogel-Tamman-Fulcher) equation, and the fitting parameters and mean absolute deviations were determined. New explanations are presented for the molality-dependent behavior of the conductivity of the binary water + [C6mim][Br] and water + [C8mim][Br] systems. The generalized Young’s rule and the semi-ideal solution theory for conductivity were used to predict the conductivities of the ternary water + [C6mim][Br] + [C8mim][Br] system from the conductivities of its corresponding binary water + [C6mim][Br] and water + [C8mim][Br] subsystems. The predictions are in good agreement with the measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a w :

water activity

m :

molality, mol⋅(kg-H2O)−1

x :

mole fraction

v :

stoichiometric coefficient for ionization of an IL

°:

the quantities of i in the binary (M i X i –H2O) solution having the same ionic strength as that of a mixed solution

References

  1. Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2084 (1999)

    Article  CAS  Google Scholar 

  2. Dupont, J., de Souza, R.F., Suarez, P.A.Z.: Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 102, 3667–3692 (2002)

    Article  CAS  Google Scholar 

  3. Welton, T.: Ionic liquids in catalysis. Coord. Chem. Rev. 248, 2459–2477 (2004)

    Article  CAS  Google Scholar 

  4. Trulove, P.C., Mantz, R.A.: In: Wasserscheid, P., Welton, T. (eds.) Ionic Liquids in Synthesis, pp. 103–126. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  5. Widegren, J.A., Saurer, E.M., Marsh, K.N., Magee, J.W.: Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity. J. Chem. Thermodyn. 37, 569–575 (2005)

    Article  CAS  Google Scholar 

  6. Marsh, K.N., Boxall, J.A., Lichtenthaler, R.: Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib. 219, 93–98 (2004)

    Article  CAS  Google Scholar 

  7. Fuller, J., Carlin, R.T., Osteryoung, R.A.: The room temperature ionic liquid 1-ethyl-3-methyl-imidazolium tetrafluoroborate: electrochemical couples and physical properties. J. Electrochem. Soc. 144, 3881–3885 (1997)

    Article  CAS  Google Scholar 

  8. Sun, J., Forsyth, M., MacFarlane, D.R.: Room-temperature molten salts based on the quaternary ammonium ion. J. Phys. Chem. B 102, 8858–8864 (1998)

    Article  CAS  Google Scholar 

  9. Vila, J., Ginés, P., Rilo, E., Cabeza, O., Varela, L.M.: Great increase of the electrical conductivity of ionic liquids in aqueous solutions. Fluid Phase Equilib. 247, 32–39 (2006)

    Article  CAS  Google Scholar 

  10. Kragl, U., Eckstein, M., Kaftzik, N.: Enzyme catalysis in ionic liquids. Curr. Opin. Biotechnol. 13, 565–571 (2002)

    Article  CAS  Google Scholar 

  11. Seddon, K.R., Stark, A., Torres, M.J.: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275–2287 (2000)

    Article  CAS  Google Scholar 

  12. Yang, J.Z., Tong, J., Li, J.B., Li, J.G., Tong, J.: Surface tension of pure and water-containing ionic liquid C5MIBF4 (1-methyl-3-pentylimidazolium tetrafluoroborate). J. Colloid Interface Sci. 313, 374–377 (2007)

    Article  CAS  Google Scholar 

  13. Mokhtarani, B., Sharifi, A., Mortaheb, H.R., Mirzaei, M., MafiMafi, M., Sadeghian, F.: Density and viscosity of pyridinium-based ionic liquids and their binary mixtures with water at several temperatures. J. Chem. Thermodyn. 41, 323–329 (2009)

    Article  CAS  Google Scholar 

  14. Dong, B., Zhang, J., Zheng, L., Wang, S., Li, X., Inoue, T.: Salt-induced viscoelastic wormlike micelles formed in surface active ionic liquid aqueous solution. J. Colloid Interface Sci. 319, 338–343 (2008)

    Article  CAS  Google Scholar 

  15. Wu, K., Zhang, Q., Liu, Q., Tang, F., Long, Y., Yao, S.: Ionic liquid surfactant-mediated ultrasonic-assisted extraction coupled to HPLC: application to analysis of tanshinones in Salvia miltiorrhiza bunge. J. Sep. Sci. 32, 4220–4226 (2009)

    Article  CAS  Google Scholar 

  16. Fernándeza, J.F., Waterkampa, D., Thöminga, J.: Recovery of ionic liquids from wastewater: aggregation control for intensified membrane filtration. Desalination 224, 52–56 (2008)

    Article  Google Scholar 

  17. Wang, J.J., Wang, H.Y., Zhang, S.L., Zhang, H.C., Zhao, Y.: Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [C n mim]Br (n=4, 6, 8, 10, 12) in aqueous solutions. J. Phys. Chem. B 111, 6181–6188 (2007)

    Article  CAS  Google Scholar 

  18. Shekaari, H., Mousavi, S.S.: Conductometric studies of aqueous ionic liquids, 1-alkyl-3-methylimidazolium halide, solutions at T=298.15–328.15 K. Fluid Phase Equilib. 286, 120–126 (2009)

    Article  CAS  Google Scholar 

  19. Ries, L.A.S., do Amaral, F.A., Matos, K.E., Martini, M.A., de Souza, M.O., de Souza, R.F.: Evidence of change in the molecular organization of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid solutions with the addition of water. Polyhedron 27, 3287–3293 (2008)

    Article  CAS  Google Scholar 

  20. Hu, Y.F., Guo, T.M.: Effect of the structures of ionic liquids and alkylbenzene-derived amphiphiles on the inhibition of asphaltene precipitation from CO2-injected reservoir oils. Langmuir 21, 8168–8174 (2005)

    Article  CAS  Google Scholar 

  21. Oblioscal, J.M., Arco, S.D., Huang, M.H.: Synthesis and optical properties of 1-alkyl-3-methylimidazolium lauryl sulfate ionic liquids. J. Fluoresc. 17, 613–618 (2007)

    Article  Google Scholar 

  22. Liu, Y.S., Hu, Y.F., Hao, Q.C., Zhang, X.M., Liu, Z.C., Li, J.G.: Viscosity and density of the system NaCl + LaCl3 + H2O and its binary subsystems at different temperatures. J. Chem. Eng. Data 54, 739–744 (2009)

    Article  CAS  Google Scholar 

  23. Nishida, T., Tashiro, Y., Yamamoto, M.: Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J. Fluorine Chem. 120, 135–141 (2003)

    Article  CAS  Google Scholar 

  24. Kubo, W., Kitamura, T., Hanabusa, K., Wada, Y., Yanagida, S.: Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator. Chem. Commun. 374–375 (2002)

  25. Vila, J., Gines, P., Pico, J.M., Franjo, C., Jimenez, E., Varela, L.M., Cabeza, O.: Temperature dependence of the electrical conductivity in EMIM-based ionic liquids. Fluid Phase Equilib. 242, 141–146 (2006)

    Article  CAS  Google Scholar 

  26. Crosthwaite, J.M., Muldoon, M.J., Dixon, J.K., Anderson, J.L., Brennecke, J.F.: Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids. J. Chem. Thermodyn. 37, 559–568 (2005)

    Article  CAS  Google Scholar 

  27. Law, G., Watson, P.R.: Surface tension measurements of N-alkylimidazolium ionic liquids. Langmuir 17, 6138–6141 (2001)

    Article  CAS  Google Scholar 

  28. Leys, J., Wübbenhorst, M., Menon, C.P., Rajesh, R., Thoen, J., Glorieux, C.: Temperature dependence of the electrical conductivity of imidazolium ionic liquids. J. Chem. Phys. 128, 064509 (2008)

    Article  Google Scholar 

  29. Wang, Y.T., Voth, G.A.: Unique spatial heterogeneity in ionic liquids. J. Am. Chem. Soc. 127, 12192–12193 (2005)

    Article  CAS  Google Scholar 

  30. Wang, Y.T., Voth, G.A.: Tail aggregation and domain diffusion in ionic liquids. J. Phys. Chem. B 110, 18601–18608 (2006) and the ref. 25 cited therein

    Article  CAS  Google Scholar 

  31. Trioloa, A., Russina, O., Fazio, B., Triolo, R., Cola, E.D.: Morphology of 1-alkyl-3-methylimidazolium hexafluorophosphate room temperature ionic liquids. Chem. Phys. Lett. 457, 362–365 (2008) and Ref. 8 cited therein

    Article  Google Scholar 

  32. Shirota, H., Funston, A.M., Wishart, J.F., Castner, E.W.J.: Ultrafast dynamics of pyrrolidinium cation ionic liquids. J. Chem. Phys. 122, 184512 (2005)

    Article  Google Scholar 

  33. Santos, L.M.N.B.F., Canongia Lopes, J.N., Coutinho, J.A.P., Esperanca, J.M.S.S., Gomes, L.R., Marrucho, I.M., Rebelo, L.P.N.: Ionic liquids: first direct determination of their cohesive energy. J. Am. Chem. Soc. 129, 284–285 (2007)

    Article  CAS  Google Scholar 

  34. Hu, Y.F.: Conformationally dependent nanodomains and their influences on transport properties of ionic liquids (2010, submitted for publication)

  35. Avent, A.G., Chaloner, P.A., Day, M.P., Seddon, K.R., Welton, T.: Evidence for hydrogen bonding in solutions of 1-ethyl-3-methylimidazolium halides, and its implications for room temperature halogenoaluminate(III) ionic liquids. J. Chem. Soc. Dalton Trans. 3405–3413 (1994)

  36. Suarez, P.A., Einloft, S., Dullius, J.E.L., de Souza, R.F., Dupont, J.: Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidazolium cation. J. Chim. Phys. 95, 1626–1639 (1998)

    Article  CAS  Google Scholar 

  37. Rebelo, L.P.N., Canongia Lopes, J.N., Esperança, J.M.S.S., Guedes, H.J.R., Łachwa, J., Najdanovic-Visak, V., Visak, A.P.: Accounting for the unique, doubly dual nature of ionic liquids from a molecular thermodynamic and modeling standpoint. Acc. Chem. Res. 40, 1114–1121 (2007)

    Article  CAS  Google Scholar 

  38. Pádua, A.A.H., Costa Gomes, M.F., Canongia Lopes, J.N.A.: Molecular solutes in ionic liquids: a structural perspective. Acc. Chem. Res. 40, 1087–1096 (2007)

    Article  Google Scholar 

  39. Pópolo, M.G.D., Kohanoff, J., Lynden-bell, R.M., Pinilla, C.: Clusters, liquids, and crystals of dialkyimidazolium salts. A combined perspective from ab initio and classical computer simulations. Acc. Chem. Res. 40, 1156–1164 (2007)

    Article  Google Scholar 

  40. Hu, Z.H., Margulis, C.J.: Heterogeneity in a room-temperature ionic liquid: persistent local environments and the red-edge effect. Proc. Natl. Acad. Sci. USA 103, 831–836 (2006)

    Article  CAS  Google Scholar 

  41. Seduraman, A., Klähn, M., Wu, P.: Characterization of nano-domains in ionic liquids with molecular simulations. Calphad 33, 605–613 (2009)

    Article  CAS  Google Scholar 

  42. Jeon, Y., Sung, J., Kim, D., Seo, C., Cheong, H., Ouchi, Y., Ozawa, R., Hamaguchi, H.: Structural change of 1-butyl-3-methylimidazolium tetrafluoroborate + water mixtures studied by infrared vibrational spectroscopy. J. Phys. Chem. B 112, 923–928 (2008)

    Article  CAS  Google Scholar 

  43. Bockris, J.O’M., Hooper, G.W.: Self-diffusion in molten alkali halides. Discuss. Faraday Soc. 32, 218–236 (1962)

    Article  Google Scholar 

  44. Mohr, S.C., Wilk, W.D., Barrow, G.M.: The association of water with bases and anions in an inert solvent. J. Am. Chem. Soc. 87, 3048–3052 (1965)

    Article  CAS  Google Scholar 

  45. Cammarata, L., Kazarian, S.G., Salter, P.A., Welton, T.: Molecular states of water in room temperature ionic liquids. Phys. Chem. Chem. Phys. 3, 5192–5200 (2001)

    Article  CAS  Google Scholar 

  46. Saha, S., Hamaguchi, H.: Effect of water on the molecular structure and arrangement of nitrile-functionalized ionic liquids. J. Phys. Chem. B 110, 2777–2781 (2006)

    Article  CAS  Google Scholar 

  47. Miller, D.G.: Binary mixing approximations and relations between specific conductance, molar conductance, equivalent conductance, and ionar conductance for mixtures. J. Phys. Chem. 100, 1220–1226 (1996)

    Article  CAS  Google Scholar 

  48. Wu, Y.C., Koch, W.F., Zhong, E.C., Friedman, H.L.: The cross-square rule for transport in electrolyte mixtures. J. Phys. Chem. 92, 1692–1695 (1988)

    Article  CAS  Google Scholar 

  49. Hu, Y.F., Zhang, X.M., Li, J.G., Liang, Q.Q.: Semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions. J. Phys. Chem. B 112, 15376–15381 (2008)

    Article  CAS  Google Scholar 

  50. Zdanovskii, A.B.: Trudy Solyanoi Laboratorii Akad. Nauk SSSR, No. 6 (1936)

  51. Stokes, R.H., Robinson, R.A.: Interactions in aqueous nonelectrolyte solutions. I. Solute-solvent equilibria. J. Phys. Chem. 70, 2126–2131 (1966)

    Article  CAS  Google Scholar 

  52. Clegg, S.L., Seinfeld, J.H.: Improvement of the Zdanovskii-Stokes-Robinson model for mixtures containing solutes of different charge types. J. Phys. Chem. A 108, 1008–1017 (2004)

    Article  CAS  Google Scholar 

  53. Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of {(1−y)H2SO4+yNa2SO4}(aq) at 298.15 K. I. Results for y=0.5 (NaHSO4) and y=0.55595,0.70189, and 0.84920. J. Chem. Thermodyn. 21, 539–560 (1989)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Feng Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JG., Hu, YF., **, CW. et al. Study on the Conductivities of Pure and Aqueous Bromide-Based Ionic Liquids at Different Temperatures. J Solution Chem 39, 1877–1887 (2010). https://doi.org/10.1007/s10953-010-9576-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9576-z

Keywords

Navigation