Log in

Velocity model of the Hronov-Poříčí Fault Zone from Rayleigh wave dispersion

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The Hronov-Poříčí Fault Zone (HPFZ) is an active tectonic area with regularly occurring shallow earthquakes up to magnitude 5. For their exact locations, at least an average velocity model of the area is needed. A method of measuring local phase velocities of surface waves using the array of stations deployed permanently in the HPFZ is introduced. Seven regional and teleseismic events are selected to represent different backazimuths of propagation. Applicable range of periods is estimated for each event. The coherency of the waves reaching the array is constraining the short period range. The dimension of the array is a limiting factor for the long-periods. A dispersion curve of Rayleigh wave phase velocity measured at the vertical component and characterizing 1D properties of the target area is determined using the seven measurements for the interval from 1 to 40 s. An isometric method is used to invert the determined dispersion curve for shear and longitudinal velocity distribution from the surface to the depth of 65 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alsina D, Snieder R, Maupin V (1993) A test of the great circle approximation in the analysis of surface waves. Geophys Res Lett 20:915–918

    Article  Google Scholar 

  • Bourova E, Kassaras I, Pedersen HA, Yanovskaya T, Hatzfeld D, Kiratzi A (2005) Constraints on absolute S velocities beneath the Aegean Sea from surface wave analysis. Geophys J Int 160:1006–1019

    Google Scholar 

  • Brož M, Štrunc J (2011) A new generation of multichannel seismic apparatus and its practical application in standalone and array monitoring. Acta Geodyn Geomater 8(3, (163)):345–352

    Google Scholar 

  • Brož M, Málek J, Stejskal V, Štěpančíková P, Štrunc J, Kolínský P (2009) Hydro-geological effects of seismicity in the Hronov-Poříčí Fault Zone area. Acta Res Rep 18:61–63

    Google Scholar 

  • Brune JN, Dorman J (1963) Seismic waves and Earth structure in the Canadian shield. Bull Seismol Soc Am 53:167–210

    Google Scholar 

  • Dziewonski A, Bloch S, Landisman M (1969) A technique for the analysis of transient seismic signals. Bull Seismol Soc Am 59:427–444

    Google Scholar 

  • Dziewonski A, Mills J, Bloch S (1972) Residual dispersion measurement—a new method of surface-wave analysis. Bull Seismol Soc Am 62:129–139

    Google Scholar 

  • Gaždová R, Kolínský P, Málek J, Vilhelm J (2008) Shear wave velocities inferred from surface wave dispersion beneath the Příbram array in the Czech Republic. Acta Geodyn Geomater 5(151):247–255

    Google Scholar 

  • Gaždová R, Kolínský P, Vilhelm J, Valenta J (2014) Combining surface waves and common methods for shallow geophysical survey. Near Surf Geophys, under review

  • Haskell NA (1953) The dispersion of surface waves on multilayered media. Bull Seismol Soc Am 43:17–34

    Google Scholar 

  • He Z, Su W, Ye T (2004) Seismic tomography of Yunnan region using short-period surface wave phase velocity. Acta Seismol Sin 17:642–650

    Article  Google Scholar 

  • Hwang R-D, Yu G-K (2005) Shear-wave velocity structure of upper mantle under Taiwan from the array analysis of surface waves. Geophys Res Lett 32, L07310

    Article  Google Scholar 

  • Ibrmajer J, Suk M (1989) Geofyzikální obraz ČSSR (Geophysical image of the ČSSR), Ústř. Úst. Geol. Academia, Prague, in Czech

    Google Scholar 

  • Isse T, Suetsugu D, Shiobara H, Fukao Y, Mochizuki K, Kanazawa T, Sugioka H, Kodaira S, Hino R (2000) Rayleigh wave phase velocities beneath the northeastern Philippine Sea as determined by data from long term broadband ocean bottom seismographs. Front Res Earth Evol 1:31–35

    Google Scholar 

  • Knopoff L, Mal AK (1967) Phase velocity of surface waves in the transition zone of continental margins. J Geophys Res 72:1769–1776

    Google Scholar 

  • Kolínský P (2004) Surface wave dispersion curves of Eurasian earthquakes: the SVAL program. Acta Geodyn Geomater 1(2 (134)):165–185

    Google Scholar 

  • Kolínský P, Brokešová J (2007) The Western Bohemia uppermost crust shear wave velocities from Love wave dispersion. J Seismol 11:101–120

    Article  Google Scholar 

  • Kolínský P, Málek J, Brokešová J (2011) Shear wave crustal velocity model of the western Bohemian Massif from Love wave phase velocity dispersion. J Seismol 15(1):81–104

    Article  Google Scholar 

  • Kolínský P, Valenta J, Gaždová R (2012) Seismicity, groundwater level variations and Earth tides in the Hronov-Poříčí Fault Zone, Czech Republic. Acta Geodyn Geomater 9(2 (166)):191–209

    Google Scholar 

  • Levshin AL, Yanovskaya TB, Lander AV, Bukchin BG, Barmin MP, Ratnikova LI, Its EN (1989) Interpretation of surface wave observations—frequency-time analysis. In: Keilis-Borok VI (ed) Seismic surface waves in a laterally inhomogeneous Earth. Kluwer Academic Publishers, Dordrecht, pp 153–163

    Google Scholar 

  • Majdański M, Kozlovskaya E, Grad M, SUDETES 2003 Working Group (2007) 3D structure of the Earth’s crust beneath the northern part of the Bohemian Massif. Tectonophysics 437:17–36

    Article  Google Scholar 

  • Málek J, Horálek J, Janský J (2005) One-dimensional qP-wave velocity model of the upper crust for the West Bohemia/Vogtland earthquake swarm region. Stud Geophys Geod 49:501–524

    Article  Google Scholar 

  • Málek J, Růžek B, Kolář P (2007) Isometric method: efficient tool for solving non-linear inverse problems. Stud Geophys Geod 51:469–491

    Article  Google Scholar 

  • Málek J, Brož M, Stejskal V, Štrunc J (2008) Local seismicity at the Hronov-Poříčí Fault (Eastern Bohemia). Acta Geodyn Geomater 5(2 (150)):171–175

    Google Scholar 

  • Martínek K, Blecha M, Daněk V, Franců J, Hladíková J, Johnová R, Uličný D (2006) Record of paleoenvironmental changes in a Lower Permian organic-rich lacustrine succession: integrated sedimentological and geochemical study of the Rudník member, Krkonoše Piedmont Basin, Czech Republic. Palaeogeogr Palaeoclimatol Palaeoecol 230:85–128

    Article  Google Scholar 

  • Mastalerz K (1995) Deposits of high-density turbidity currents on fan-delta slopes: an example from the upper Visean Szczawno Formation, Intrasudetic Basin, Poland. Sediment Geol 98:121–146

    Article  Google Scholar 

  • Mitra S, Priestley K, Gaur VK, Rai SS (2006) Shear-wave structure of the South Indian lithosphere from Rayleigh wave phase-velocity measurements. Bull Seismol Soc Am 96:1551–1559

    Article  Google Scholar 

  • Nafe JE, Brune JN (1960) Observations of phase velocity for Rayleigh waves in the period range 100 to 400 seconds. Bull Seismol Soc Am 50:427–439

    Google Scholar 

  • Nováková L (2010) Detailed brittle tectonic analysis of the limestones in the quarries near Vápenná village. Acta Geodyn Geomater 7(2 (158)):1–8

    Google Scholar 

  • Nováková L (2014) Evolution of paleostress fields and brittle deformation in Hronov-Poříčí Fault Zone, Bohemian Massif. Stud Geophys Geod 58. doi:10.1007/s11200-013-1167-1

  • Proskuryakova TA, Novotný O, Voronina EV (1981) Studies of the Earth’s structure by the surface-wave method (Central Europe) (Izuchenie stroeniya Zemli metodom poverkhnostnykh voln (Tsentral’naya Evropa)), Nauka, Moscow, in Russian, 92 pp

  • Schenk V, Schenková Z, Cajthamlová M, Fučík Z (2010) GEONAS—geodynamic network of permanent GNSS stations within the Czech Republic. Acta Geodyn Geomater 7(1(157)):99–111

    Google Scholar 

  • Špaček P, Sýkorová Z, Pazdírková J, Švancara J, Havíř J (2006) Present-day seismicity of the south-eastern Elbe Fault System (NE Bohemian Massif). Stud Geophys Geod 50(2):233–258

    Article  Google Scholar 

  • Stange S, Friederich W (1993) Surface wave dispersion and upper mantle structure beneath southern Germany from joint inversion of network recorded teleseismic events. Geophys Res Lett 20(21):2375–2378

    Article  Google Scholar 

  • Stejskal V, Štěpančíková P, Vilímek V (2006) Selected geomorphological methods assessing neotectonic evolution of the seismoactive Hronov-Poříčí Fault Zone. Geomorphologica Slovaca 6(1):14–22

    Google Scholar 

  • Stejskal V, Skalský L, Kašpárek L (2007) Results of two-years seismo-hydrological monitoring in the area of the Hronov-Poříčí Fault Zone, Western Sudetes. Acta Geodyn Geomater 4(4 (148)):59–76

    Google Scholar 

  • Stejskal V, Kašpárek L, Kopylova GN, Lyubushin AA, Skalský L (2009) Precursory groundwater level changes in the period of activation of the weak intraplate seismic activity on the NE margin of the Bohemian Massif (Central Europe) in 2005. Stud Geophys Geod 53:215–238

    Article  Google Scholar 

  • Štěpančíková P, Hók J, Nývlt D, Dohnal J, Sýkorová I, Stemberk J (2010) Active tectonics research using trenching technique on the south-eastern section of the Sudetic Marginal Fault (NE Bohemian Massif, central Europe). Tectonophysics 485:269–282

    Article  Google Scholar 

  • Tásler R (1979) Geology of the Czech part of the Intrasudetic Basin. ÚÚG, Prague (in Czech with English summary)

    Google Scholar 

  • Thomson WT (1950) Transmission of elastic waves through a stratified solid medium. J Appl Phys 21:89–93

    Article  Google Scholar 

  • Valenta J, Stejskal V, Štěpančíková P (2008) Tectonic pattern of the Hronov-Poříčí Trough as seen from pole-dipole geoelectrical measurements. Acta Geodyn Geomater 5(2):185–195

    Google Scholar 

  • Wilde-Piórko M, Saul J, Grad M (2005) Differences in the crustal and uppermost mantle structure of the Bohemian Massif from teleseismic receiver functions. Stud Geophys Geod 49:85–107

    Article  Google Scholar 

  • Woldřich JN (1901) Earthquake in the north-eastern Bohemia on January 10, 1901. Trans Czech Acad Sci, Series II, 10(25), 1–33 (in Czech)

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Grant No. 205/09/1244 of the Czech Science Foundation and by the Institute’s Research Plan No. A VOZ30460519. It was also financed by the CzechGeo/EPOS project. The data from two of the stations used in this study were kindly provided by Jan Zedník from the Czech Regional Seismic Network, Institute of Geophysics, Academy of Sciences of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Kolínský.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolínský, P., Valenta, J. & Málek, J. Velocity model of the Hronov-Poříčí Fault Zone from Rayleigh wave dispersion. J Seismol 18, 617–635 (2014). https://doi.org/10.1007/s10950-014-9433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-014-9433-4

Keywords

Navigation