Log in

The Effect of Boron on Equilibrium of Superconducting Phases in Bi-Pb-Sr-Ca-Cu-O System

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The crystal structures of type 1234 and 2234 are not found in compositions Bi1-xBxSr2Ca3Cu4Oy and Bi2-xBxSr2Ca3Cu4Oy after synthesis under conditions of ambient pressure P = 1 bar and T = 835 °C for τ = 240 h. This conclusion is obtained as a result of the fact that the series of bismuth superconductors Bi1-xBxSr2Ca3Cu4Oy, Bi2-xBxSr2Ca3Cu4Oy, Bi2-xBxSr2Ca2Cu3Oy, Bi1.7-xBxPb0.3Sr2Ca2Cu3Oy with different boron content x = 0-2 were synthesized followed by slow (rate < 10 °C/sec) cooling or quenching (< 100 °C/sec). Samples of Bi1.7-xBxPb0.3Sr2Ca2Cu3Oy with a boron content of x = 0.5 have a significant (> 35%) proportion of the superconducting phase 2223, regardless of the accuracy of observing the temperature modes of synthesis (in temperature ranges < ±10 °C) and cooling after it. A model of the effect of boron on phase equilibrium in Bi-Pb-Sr-Ca-Cu-O system is proposed using the process of boron-bismuth glass formation. Therefore, the boron addition during the synthesis of bismuth superconductors will increase the production process reproducibility of phase 2223. Also, this technology can be used at the synthesis of superconductors from the boron-bismuth not very enriched ores in conditions of limited available resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Lee, Ho Keun: Effects of Ga do** on the superconducting properties of (B1-xGax)(Ba1.25Sr0.75)(Ca0.5Er0.5)Cu2Oz. Prog. Supercond. Cryog. 25(4), 14–18 (2023). https://doi.org/10.9714/psac.2023.25.4.014

    Article  Google Scholar 

  2. Flores-Livas, J.A., Boeri, L., Sanna, A., Profeta, G., Arita, R., Eremets, M.: A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep. 856, 1–78 (2020). https://doi.org/10.1016/j.physrep.2020.02.0

    Article  ADS  MathSciNet  Google Scholar 

  3. Kim, M.S., Lee, S.I., Iyo, A., Tokiwa, K., Tokumoto, M., Ihara, H.: Interlayer coupling and superconducting properties of the triple-layer compound B0.6C0.4(Sr0.25Ba0.75)2Ca2Cu3O9. Phys. Rev. B 57(14), 8667 (1998). https://doi.org/10.1103/PhysRevB.57.8667

    Article  ADS  Google Scholar 

  4. Wang, Y., Wang, K., Sun, Y., Ma, L., Wang, Y., Zou, B., ... & Wang, H.: Synthesis and superconductivity in yttrium superhydrides under high pressure. Chin. Phys. B 31(10), 106201 (2022). https://doi.org/10.1088/1674-1056/ac872e

    Article  ADS  Google Scholar 

  5. Gladyshevskii, R., Galez, P.: Crystal structures of high-Tc superconducting cuprates. In: Handbook of Superconductivity, pp. 267–431. Academic Press (2000). https://doi.org/10.1016/B978-012561460-3/50009-6

    Chapter  Google Scholar 

  6. Takayama-Muromachi, E., Matsui, Y., Kosuda, K.: New oxyborate superconductor, BSr2Ca3Cu4O11 (Tc=110 K) prepared at high pressure. Physica C 241(1–2), 137–141 (1995). https://doi.org/10.1016/0921-4534(94)02363-8

    Article  ADS  Google Scholar 

  7. Katsura, H., Suemune, T.H.: Boron ion do** effects on superconductivity of YBa2Cu3-xBxO7-y ceramics. Jpn. J. Appl. Phys. 30(2R), 274 (1991). https://doi.org/10.1143/JJAP.30.274

    Article  ADS  Google Scholar 

  8. Li, J.Q., Li, F.H., Zhao, Z.X.: Transmission-electron-microscopy study of incommensurate structural modulation in Y(Ba,Sr)2Cu2.5B0.5Oy. Phys. Rev. B 48(2), 1333 (1993). https://doi.org/10.1103/PhysRevB.48.1333

    Article  ADS  Google Scholar 

  9. Zhu, W.J., Yue, J.J., Huang, Y.Z., Zhao, Z.X.: (B, Cu)Sr2YCu2O7, a new layered copper-oxide based on the boron-oxygen group. Physica C 205(1–2), 118–122 (1993). https://doi.org/10.1016/0921-4534(93)90176-Q

    Article  ADS  Google Scholar 

  10. Iyo, A., Tokiwa, K., Tereda, N., Tokumoto, M., Ihara, H.: Preparation of (B1−xCx)(Sr1−yBay)2Ca2Cu3O9 with Tc=119 K. Czech J. Phys. 46(Suppl 3), 1481–1482 (1996). https://doi.org/10.1007/BF02562855

    Article  Google Scholar 

  11. Takayama-Muromachi, E., Kawashima, T., Matveev, A.T., Isobe, M., Ramirez-Castellanos, J., Matsui, Y.: Superconductivity of M-12(n-1)n series of compounds prepared under high pressure. Czech J. Phys. 46, 1461–1462 (1996). https://doi.org/10.1007/BF02562845

    Article  Google Scholar 

  12. Kawashima, T., Matsui, Y., Takayama-Muromachi, E.: New series of oxide superconductors, BSr2Can−1CunO2n+3 (n=3∼5), prepared at high pressure. Physica C 254(1–2), 131–136 (1995). https://doi.org/10.1016/0921-4534(95)00566-8

    Article  ADS  Google Scholar 

  13. Yu, S., Okuda, Y., Kawashima, T., Takayama-Muromachi, E.: Critical current densities and irreversibility fields of high Tc superconductors, GaSr2Ca2Cu3O9 and BSr2Can-1CunO2n+3 (n= 3, 4). Jpn. J. Appl. Phys. 35(6R), 3378 (1996). https://doi.org/10.1143/JJAP.35.3378

    Article  ADS  Google Scholar 

  14. Grumbach, M.P., Sankey, O.F., McMillan, P.F.: Properties of B2O: An unsymmetrical analog of carbon. Phys. Rev. B 52(22), 15807 (1995). https://doi.org/10.1103/PhysRevB.52.15807

    Article  ADS  Google Scholar 

  15. Swenson, J., Börjesson, L., Howells, W.S.: Structure of borate glasses from neutron-diffraction experiments. Phys. Rev. B 52(13), 9310 (1995). https://doi.org/10.1103/PhysRevB.52.9310

    Article  ADS  Google Scholar 

  16. Barrio, R.A., Castillo-Alvarado, F.L., Galeener, F.L.: Structural and vibrational model for vitreous boron oxide. Phys. Rev. B 44(14), 7313 (1991). https://doi.org/10.1103/PhysRevB.44.7313

    Article  ADS  Google Scholar 

  17. Barrio, R.A., de Landa Castillo-Alvarado, F.: Model for the vibrational spectra of B2O3xLi2O. Phys. Rev. B 46(21), 13779 (1992). https://doi.org/10.1103/PhysRevB.46.13779

    Article  ADS  Google Scholar 

  18. Kieffer, J.: Mechanical degradation and viscous dissipation in B2O3. Phys. Rev. B 50(1), 17 (1994). https://doi.org/10.1103/PhysRevB.50.17

    Article  ADS  Google Scholar 

  19. Vast, N., Bernard, S., Zerah, G.: Structural and electronic properties of liquid boron from a molecular-dynamics simulation. Phys. Rev. B 52(6), 4123 (1995). https://doi.org/10.1103/PhysRevB.52.4123

    Article  ADS  Google Scholar 

  20. Saligan, P.P., Oikawa, Y., Koizumi, K., Mori, N., Ozaki, H.: Tc, onset, fluctuation and intergrain connection in the Bi2−xGexSr2CaCu2O8+δ. Czech J. Phys. 46, 1281–1282 (1996). https://doi.org/10.1007/BF02562755

    Article  Google Scholar 

  21. Isobe, M., Kawashima, T., Kosuda, K., Matsui, Y., Takayama-Muromachi, E.: A new series of high-Tc superconductors AlSr2Can-1CunO2n+3 (n=4, Tc=110 K; n=5, Tc=83 K) prepared at high pressure. Physica C 234(1–2), 120–126 (1994). https://doi.org/10.1016/0921-4534(94)90063-9

    Article  ADS  Google Scholar 

  22. Slater, P.R., Greaves, C., Slaski, M.: Synthesis and superconducting properties of the fluorite block system [Y/Ce]2Sr2−xBaxCu3O9−z substituted by oxy-anions (BO33−, SO42−, PO43−). Physica C 235, 741–742 (1994). https://doi.org/10.1016/0921-4534(94)91595-4

    Article  ADS  Google Scholar 

  23. Ozturk, H., et al.: Effects of carbon-encapsulated nano boron addition on superconducting parameters of BSCCO. J. Alloys Compd. (2018). https://www.sciencedirect.com/science/article/pii/S0925838817335296

  24. Aytekin, M.E., Özkurt, B.: The influence of nano-sized SnO2 do** on physical and magnetic properties of the Bi2Sr2-x(SnO2)xCa1Cu1.75Na0.25Oy superconductors. J. Supercond. Nov. Magn. 33, 965 (2020). https://doi.org/10.1007/s10948-019-05336-w

    Article  Google Scholar 

  25. Zhang, S., Ma, X., Shao, B., Cui, L., Liu, G., Zheng, H., Liu, X., Feng, J., Li, C., Zhang, P.: Fabrication of multifilamentary powder in tube superconducting tapes of Bi-2223 with Sr deficient starting composition. Cryogenics 114, 103245 (2021). https://doi.org/10.1016/j.cryogenics.2020.103245

    Article  Google Scholar 

  26. Habanjar, K., El Haj Hassan, F., Awad, R.: Physical and dielectric properties of (Bi, Pb)-2223 superconducting samples added with BaFe12O19 nanoparticles. Chem. Phys. Lett. 757, 137880 (2020). https://doi.org/10.1016/j.cplett.2020.137880

    Article  Google Scholar 

  27. Masnita, M.J., Abd-Shukor, R.: Iron sulfide effects on AC susceptibility and electrical properties of Bi1.6Pb0.4Sr2CaCu2O8 superconductor. Results Phys. 17, 103177 (2020). https://doi.org/10.1016/j.rinp.2020.103177

    Article  Google Scholar 

  28. Lojka, M., Antončík, F., Sedmidubský, D., Hlásek, T., Wild, J., Pavlů, J., Jankovský, O., Bartůnĕk, V.: Phase-stable segmentation of BSCCO high-temperature superconductor into micro-, meso-, and nano-size fractions. J. Mater. Res. Technol. 9, 12071 (2020). https://doi.org/10.1016/j.jmrt.2020.08.107

    Article  Google Scholar 

  29. Anas, M.: The effect of PbF2 do** on the structural, electrical and mechanical properties of (Bi, Pb)–2223 superconductor. Chem. Phys. Lett. 742, 137033 (2020). https://www.sciencedirect.com/science/article/pii/S0009261419310140

    Article  Google Scholar 

  30. Anas, M., El Makdah, M.H., El Dakdouki, M.H., et al.: Investigation of Physical Properties of (Nano-SmIG)/(Bi, Pb)-2212 Phase. J. Low Temp. Phys. 213, 191 (2023). https://doi.org/10.1007/s10909-023-02994-y

    Article  ADS  Google Scholar 

  31. Dogruer, M., Yildirim, G., Terzioglu C.: Effect of Nd/Sr partial replacement on characteristic Bi-2223 phase and related fundamental superconducting parameters. Article 19 July 2022. https://springer.longhoe.net/10.1007/s10948-022-06330-5?fromPaywallRec=true

  32. Guner, S.B., Zalaoglu, Y., Turgay, T., Ozyurt, O., Ulgen, A.T., Dogruer, M., Yildirim, G.: A detailed research for determination of Bi/Ga partial substitution effect in Bi-2212 superconducting matrix on crucial characteristic features. J. Alloys Compd. 772, 388 (2019). https://doi.org/10.1016/j.jallcom.2018.09.071

    Article  Google Scholar 

  33. Akkurt, B., Erdem, U., Zalaoglu, Y., et al.: Evaluation of crystallographic and electrical-superconducting features of Bi-2223 advanced ceramics with vanadium addition. J. Mater. Sci. 32, 5035 (2021). https://doi.org/10.1007/s10854-021-05238-5

    Article  Google Scholar 

  34. Erdem, U.: Homovalent Ho/Bi substitution effect on characteristic properties of Bi-2212 superconducting ceramics. J. Mater. Sci. Mater. Electron. 32, 28587 (2021). https://doi.org/10.1007/s10854-021-07236-z

    Article  Google Scholar 

  35. Li, Z.B., Liu, G.Q., Jiao, G.F., Xu, X.Y., Hao, Q.B., Bai, L.F., Yao, K., Li, C.S.: Influence of the precursor powder composition on the microstructure and the critical current density of Bi2212 wires. J. Mater. Sci: Mater. Electron. 33(26), 21111 (2022). https://springer.longhoe.net/doi/10.1007/s10854-022-08914-2

    Google Scholar 

  36. Oloye, T.A., Matras, M., Jiang, J., Hossain, S.I., Su, Y., Trociewitz, U.P., Hellstrom, E.E., Larbalestier, D.C., Kametani, F.: Correlation of critical current density to quasi-biaxial texture and grain boundary cleanliness in fully dense Bi-2212 wires. Supercond. Sci. Technol. 34(3), 035018 (2021). https://doi.org/10.1088/1361-6668/abd575

    Article  ADS  Google Scholar 

  37. Liu, G.Q., **, L.H., Xu, X.Y., Jiao, G.F., Zheng, H.L., Hao, Q.B., Cui, L.J., Yu, Z.M., Li, C.S.: Comparison of intermediate phase evolution in Bi-2212 powders prepared by spray pyrolysis and co-precipitation methods for high performance wires. Rare. Metal. Mat. Eng. 1, 92 (2022)

    Google Scholar 

  38. Hao, Q.B., Li, C.S., Xu, X.Y., Liu, G.Q., Jiao, G.F., Zheng, H.L., Zhang, S.N., Li, G.S., Zhang, C.P., Yu, Z.M., Bai, L.F., Feng, J.Q., Zhang, P.X.: Effect of pre-annealing on microstructure, mechanical properties and current-carrying properties of Bi-2212 wires. Fusion Eng. Des. 156, 111606 (2020). https://doi.org/10.1016/j.fusengdes.2020.111606

    Article  Google Scholar 

  39. Angrisani Armenio, A., Leveratto, A., de Marzi, G., Traverso, A., Bernini, C., Celentano, G., Malagoli, A.: Investigation of transport mechanisms induced by filament-coupling bridges-network in Bi-2212 wires. Supercond. Sci. Technol. 35(3), 035002 (2022). https://doi.org/10.1088/1361-6668/ac45a0

    Article  ADS  Google Scholar 

  40. Pothugantia, P.K., Bhogia, A., Kalimib, M.R., Reniguntla, P.: Physical and Optical Properties of Borobismuthate Glasses Containing Vanadium Oxide. Glass Phys. Chem. 46(2), 146 (2020)

    Article  Google Scholar 

  41. Sasakura, H., Akagi, Y., Tsukui, S., et al.: Effect of Boron Substitution for Bi on Superconductivity of the Bi-2212 Phase in the Bi-Sr-Ca-Cu-O System. J. Supercond. Nov. Magn. 23, 437–441 (2010). https://doi.org/10.1007/s10948-009-0594-2

    Article  Google Scholar 

  42. Fallah-Arani, H., Baghshahi, S., Sedghi, A., Stornaiuolo, D., Tafuri, F., Riahi-Noori, N.: Enhancement in superconducting properties of Bi2Sr2Ca1Cu2O8+θ (Bi-2212) by means of boron oxide additive. Physica C: Superconductivity and its Applications 548, 31–39 (2018). https://doi.org/10.1016/j.physc.2018.01.012

    Article  ADS  Google Scholar 

  43. Chandra Sekhar, M., Gopalakrishna, B., Kumar, M.M., Suryanarayana, S.V.: Effect of Boron Do** in Bi-based 2223 Superconductors. Cryst. Res. Technol. 30(3), 345–352 (1995). https://doi.org/10.1002/crat.2170300312

    Article  Google Scholar 

  44. Chen, H., Li, Y., Wang, M., Han, G., Shi, M., Zhao, X.: Smart metastructure method for increasing Tc of Bi(Pb)SrCaCuO high-temperature superconductors. J. Supercond. Novel Magn. 33, 3015–3025 (2020). https://doi.org/10.1007/s10948-020-05591-2

    Article  Google Scholar 

  45. Margiani, N.G., Nikoghosyan, S.K., Adamia, Z.A., Dzanashvili, D.I., Kuzanyan, V.S., Papunashvili, N.A., Kvartskhava, I.G., Sarkisyan, A.G., Zhghamadze, V.V.: Enhancement of phase formation and critical current density in (Bi,Pb)-2223 superconductor by boron addition and ball milling. Int. J. Adv. Appl. Phys. Res. 1(1), 1–5 (2016). https://doi.org/10.15379/2408-977X.2016.01

    Article  Google Scholar 

  46. Eremina, E.A., Kravchenko, A.V., Kazin, P.E., Tretyakov, Y.D., Jansen, M.: Influence of boron-containing dopants on the formation of superconducting phase in the system Bi(Pb)–Sr–Ca–Cu–O. Supercond. Sci. Technol. 11, 223 (1998)

    Article  ADS  Google Scholar 

  47. Popov, A.G., Dovgopol, V.P., Olevsky, F.M., Melnikov, V.S., Pan, V.M.: The superconductivity of the Sb-doped Bi-Pb-Sr-Ca-Cu-O compounds. Supercond. Sci. Technol. 5, 654 (1992)

    Article  ADS  Google Scholar 

  48. Cao, H., Zhang, S., Cui, Y., Zhi, L., Zhang, Y., Zhang, W., ... & Zhang, P.: Development of a novel fabrication technique for high-quality Bi-2223 bulks with high superconducting performance. Ceram. Int. (2024). https://doi.org/10.1016/j.ceramint.2024.01.125

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to Drs. V. S. Melnikov, A. G. Popov, A. L. Kasatkin, V. M. Pan, O. M. Fesenko, A. A. Kordyuk for all kinds of assistance and useful recommendations.

Author information

Authors and Affiliations

Authors

Contributions

The author performed all stages of research and writing the article.

Corresponding author

Correspondence to S. M. Starrynets.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starrynets, S.M. The Effect of Boron on Equilibrium of Superconducting Phases in Bi-Pb-Sr-Ca-Cu-O System. J Supercond Nov Magn 37, 1079–1088 (2024). https://doi.org/10.1007/s10948-024-06767-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-024-06767-w

Keywords

Navigation