Log in

Enhanced Ferromagnetism in Nano-sized Sn0.85Co0.10Fe0.03Mn0.02O2 Dilute Magnetic Semiconductor Synthesised by Sol–Gel Method

  • Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Co-Fe–Mn co-doped SnO2 nanoparticles have been effectively synthesised by sol–gel method. To explore the effect of co-do** in instigating room-temperature ferromagnetism in SnO2 nanocrystals, the structural, optical and magnetic behaviours of Sn0.85Co0.10Fe0.03Mn0.02O2 nanoparticles were examined. Also, the oxidation states of dopants were evaluated using XPS analysis. XRD data exhibited pure SnO2 phase, revealing the effectiveness of the method of synthesis in substituting the dopant ions into Sn sites. The average crystallite size of the synthesised sample was calculated to be 21 nm. SEM–EDX and HRTEM-SAED revealed the surface morphology, elemental composition, lattice plane and the polycrystalline nature of the nanoparticles. Diffuse reflectance spectroscopy data illustrated a decrease in bandgap compared to bulk SnO2 due to the effect of dopants. FTIR spectrum disclosed the prominent peaks corresponding to SnO2. The occurrence of room-temperature ferromagnetism in the prescribed sample has been validated from the magnetic hysteresis plotted using VSM data analysis. The analysis of all the abovementioned characterisations revealed the incorporation of dopants into SnO2 host material. The emergence of magnetism in the sample depends mainly on the distribution of vacancy defects and nano-size of the sample, in addition to the surface diffusion of magnetic dopant ions into the SnO2 lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., Koinuma, H.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science(80-.) 80(291), 854–856 (2001). https://doi.org/10.1126/science.1056186

    Article  ADS  Google Scholar 

  2. Rajan, R., Vizhi, R.E.: Investigation of room-temperature ferromagnetism on pristine and non-ferromagnetic dopant-substituted SnO2 nanoparticles. J. Supercond. Nov. Magn. 30, 3199–3206 (2017). https://doi.org/10.1007/s10948-017-4118-1

    Article  Google Scholar 

  3. Dietl, T.: A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010). https://doi.org/10.1038/nmat2898

    Article  ADS  Google Scholar 

  4. Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005). https://doi.org/10.1038/nmat1310

    Article  ADS  Google Scholar 

  5. Albanese, E., Leccese, M., Di Valentin, C., Pacchioni, G.: Magnetic properties of nitrogen-doped ZrO2: theoretical evidence of absence of room temperature ferromagnetism. Sci. Rep. 6, 31435 (2016). https://doi.org/10.1038/srep31435

    Article  ADS  Google Scholar 

  6. MacDonald, A.H., Schiffer, P., Samarth, N.: Ferromagnetic semiconductors: moving beyond (Ga, Mn)As. Nat. Mater. 4, 195–202 (2005). https://doi.org/10.1038/nmat1325

    Article  ADS  Google Scholar 

  7. Lee, J., Subramaniam, N.G., Agnieszka Kowalik, I., Nisar, J., Lee, J., Kwon, Y., Lee, J., Kang, T., Peng, X., Arvanitis, D., Ahuja, R.: Towards a new class of heavy ion doped magnetic semiconductors for room temperature applications. Sci. Rep. 5, 17053 (2015). https://doi.org/10.1038/srep17053

    Article  ADS  Google Scholar 

  8. Dietl, T.: Functional ferromagnets 2, 4–6 (2003)

    Google Scholar 

  9. Kittilstved, K.R., Liu, W.K., Gamelin, D.R.: Electronic structure origins of polarity-dependent high-TC ferromagnetism in oxide-diluted magnetic semiconductors. Nat. Mater. 5, 291–297 (2006). https://doi.org/10.1038/nmat1616

    Article  ADS  Google Scholar 

  10. Aragón, F.H., Cohen, R., Coaquira, J.A.H., Barros, G.V., Hidalgo, P., Nagamine, L.C.C.M., Gouvêa, D.: Effects of particle size on the structural and hyperfine properties of tin dioxide nanoparticles. Hyperfine Interact. 202, 73–79 (2011). https://doi.org/10.1007/s10751-011-0340-6

    Article  ADS  Google Scholar 

  11. Dopants in nanocrystalline tin dioxide: Rumyantseva, M.N., Safonova, O. V., Boulova, M.N., Ryabova, L.I., Gas’kov, A.M. Russ. Chem. Bull. 52, 1217–1238 (2003). https://doi.org/10.1023/A:1024916020690

    Article  Google Scholar 

  12. Punnoose, A., Seehra, M.S., Park, W.K., Moodera, J.S.: On the room temperature ferromagnetism in Co-doped TiO2 films. J. Appl. Phys. 93, 7867–7869 (2003). https://doi.org/10.1063/1.1556121

    Article  ADS  Google Scholar 

  13. Park, J.H., Kim, M.G., Jang, H.M., Ryu, S., Kim, Y.M.: Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl. Phys. Lett. 84, 1338 (2004). https://doi.org/10.1063/1.1650915

    Article  ADS  Google Scholar 

  14. Philip, J., Punnoose, A., Kim, B.I., Reddy, K.M., Layne, S., Holmes, J.O., Satpati, B., LeClair, P.R., Santos, T.S., Moodera, J.S.: Carrier-controlled ferromagnetism in transparent oxide semiconductors. Nat. Mater. 5, 298–304 (2006). https://doi.org/10.1038/nmat1613

    Article  ADS  Google Scholar 

  15. Punnoose, A., Hays, J., Gopal, V., Shutthanandan, V.: Room-temperature ferromagnetism in chemically synthesized Sn1−xCoxO2 powders. Appl. Phys. Lett. 85, 1559–1561 (2004). https://doi.org/10.1063/1.1786633

    Article  ADS  Google Scholar 

  16. Van Komen, C., Thurber, A., Reddy, K.M., Hays, J., Punnoose, A.: Structure–magnetic property relationship in transition metal (M=V, Cr, Mn, Fe Co, Ni) doped SnO2 nanoparticles. J. Appl. Phys. 103, 07D141 (2008). https://doi.org/10.1063/1.2836797

    Article  Google Scholar 

  17. Rajan, R., Vizhi, R.E.: Effect of Co3+ substitution on the structural, optical, and room-temperature magnetic properties of SnO2 nanoparticulates. J. Mater. Sci. Mater. Electron. 32, 12716–12724 (2021). https://doi.org/10.1007/s10854-021-05906-6

    Article  Google Scholar 

  18. Chikhale, L.P., Patil, J.Y., Rajgure, A.V., Shaikh, F.I., Mulla, I.S., Suryavanshi, S.S.: Co-precipitation synthesis of nanocrystalline SnO2: effect of Fe do** on structural, morphological and ethanol vapor response properties. Measurement 57, 46–52 (2014). https://doi.org/10.1016/J.MEASUREMENT.2014.07.011

    Article  ADS  Google Scholar 

  19. Muthukumaran, S., Gopalakrishnan, R.: Structural, optical, FTIR and photoluminescence properties of Zn0.96−xCo0.04CuxO (x=0.03, 0.04 and 0.05) nanopowders. Phys. B Condens. Matter. 407, 3448–3456 (2012). https://doi.org/10.1016/J.PHYSB.2012.04.057

    Article  ADS  Google Scholar 

  20. Nakai, I., Sasano, M., Inui, K., Korekawa, T., Ishijima, H., Katoh, H., Li, Y.J., Kurisu, M.: Oxygen vacancy and magnetism of a room temperature ferromagnet Co-doped TiO2. J. Korean Phys. Soc. 63, 532–537 (2013). https://doi.org/10.3938/jkps.63.532

    Article  ADS  Google Scholar 

  21. Kanamori, J.: Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959). https://doi.org/10.1016/0022-3697(59)90061-7

    Article  ADS  Google Scholar 

  22. Goodenough, J.B.: Theory of the role of covalence in the perovskite-type manganites [La, M (II)]MnO3. Phys. Rev. 100, 564–573 (1955). https://doi.org/10.1103/PhysRev.100.564

    Article  ADS  Google Scholar 

  23. Zhu, S., Chen, C., Li, Z.: Magnetic enhancement and magnetic signal tunability of (Mn, Co) co-doped SnO2 dilute magnetic semiconductor nanoparticles. J. Magn. Magn. Mater. 471, 370–380 (2019). https://doi.org/10.1016/j.jmmm.2018.09.106

    Article  ADS  Google Scholar 

  24. Lee, A.Y., Blakeslee, D.M., Powell, C.J., Rumble, J.R., Jr.: Development of the web-based NIST Xray Photoelectron Spectroscopy (XPS) Database. Data Sci. J. 1, 1–12 (2002). https://doi.org/10.2481/dsj.1.1

    Article  Google Scholar 

  25. Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R., Smart, R.S.C.: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe. Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  ADS  Google Scholar 

  26. Fu, Y., Sun, N., Feng, L., Wen, S., An, Y., Liu, J.: Local structure and magnetic properties of Fe-doped SnO 2 films. J. Alloys Compd. 698, 863–867 (2017). https://doi.org/10.1016/j.jallcom.2016.12.297

    Article  Google Scholar 

  27. Bilovol, V., Ferrari, S., Saccone, F.D., Pampillo, L.G.: Effect of the dopant on the structural and hyperfine parameters of Sn 0.95 M 0.05 O 2 nanoparticles (M: V, Mn, Fe, Co). Mater. Res. Express. 6, 0850h6 (2019). https://doi.org/10.1088/2053-1591/ab29cc

    Article  Google Scholar 

  28. Uddin, M.T., Nicolas, Y., Olivier, C., Toupance, T., Servant, L., Müller, M.M., Kleebe, H.-J., Ziegler, J., Jaegermann, W.: Nanostructured SnO 2 –ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem. 51, 7764–7773 (2012). https://doi.org/10.1021/ic300794j

    Article  Google Scholar 

  29. Kuantama, E., Han, D.-W., Sung, Y.-M., Song, J.-E., Han, C.-H.: Structure and thermal properties of transparent conductive nanoporous F:SnO2 films. Thin Solid Films 517, 4211–4214 (2009). https://doi.org/10.1016/j.tsf.2009.02.044

    Article  ADS  Google Scholar 

  30. Ma, J., Liu, C., Chen, K.: Assembling non-ferromagnetic materials to ferromagnetic architectures using metal-semiconductor interfaces. Sci. Rep. 6, 34404 (2016). https://doi.org/10.1038/srep34404

    Article  ADS  Google Scholar 

  31. Vaseashta, A., Mihailescu, I.N.: Functionalized nanoscale materials, devices and systems. Springer (2008)

  32. Gemming, S. (Sibylle), Schreiber, M., Suck, J.B.: Materials for tomorrow: theory, experiments, and modelling. 194 (2007)

  33. Coey, J.M.D.: High-temperature ferromagnetism in dilute magnetic oxides. J. Appl. Phys. 97, 8–11 (2005). https://doi.org/10.1063/1.1849054

    Article  Google Scholar 

  34. Coey, J.M.D., Douvalis, A.P., Fitzgerald, C.B., Venkatesan, M.: Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332–1334 (2004). https://doi.org/10.1063/1.1650041

    Article  ADS  Google Scholar 

  35. Errico, L.A., Rentería, M., Weissmann, M.: Theoretical study of magnetism in transition-metal-doped TiO2 and TiO2−δ. Phys. Rev. B 72, 184425 (2005). https://doi.org/10.1103/PhysRevB.72.184425

    Article  ADS  Google Scholar 

  36. Vizhi, R.E., Rajan, R.: Structural, optical and room temperature magnetic properties of sol–gel synthesized (Co, Fe) co-doped SnO2 nanoparticles. J. Cryst. Growth 584, 126565 (2022). https://doi.org/10.1016/j.jcrysgro.2022.126565

    Article  Google Scholar 

  37. Banerjee, S., Tyagi, A.K.: Functional Materials: Preparation. Elsevier, Processing and Applications (2011)

    Google Scholar 

  38. Gaj, J., Kossut, J.: Introduction to the Physics of Diluted Magnetic Semiconductors. Springer, Berlin Heidelberg, Berlin, Heidelberg (2010)

    Book  Google Scholar 

  39. Kharisov, B.I., Kharissova, O.V.: Radiation Synthesis of Materials and Compounds. CRC Press (2016)

  40. Miglio, L., Montalenti, F.: Silicon-Germanium (SiGe) Nanostructures: Production, Properties, and Applications in Electronics. Woodhead Publishing, UK (2011)

    Google Scholar 

  41. Pohm, A.V., Comstock, C.S., Hurst, A.T.: Quadrupled nondestructive outputs from magnetoresistive memory cells using reversed word fields. J. Appl. Phys. 67, 4881–4883 (1990). https://doi.org/10.1063/1.344766

    Article  ADS  Google Scholar 

  42. Johnson, M., Bennett, B.R., Yang, M.J., Miller, M.M., Shanabrook, B.V.: Hybrid ferromagnet-semiconductor gates for nonvolatile memory. In: Seventh Biennial IEEE International Nonvolatile Memory Technology Conference. Proceedings (Cat. No.98EX141). pp. 78–83. IEEE (1998)

  43. Engel, B.N., Akerman, J., Butcher, B., Dave, R.W., DeHerrera, M., Durlam, M., Grynkewich, G., Janesky, J., Pietambaram, S.V., Rizzo, N.D., Slaughter, J.M., Smith, K., Sun, J.J., Tehrani, S.: A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans. Magn. 41, 132–136 (2005). https://doi.org/10.1109/TMAG.2004.840847

    Article  ADS  Google Scholar 

  44. Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990). https://doi.org/10.1063/1.102730

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the management of Vellore Institute of Technology, Vellore, for their constant support and the characterisation facilities provided. The authors also thank SAIF, IIT Madras, for providing VSM measurements; STIC, CUSAT, for carrying out HRTEM/SAED and Nanotechnology Research Centre (NRC), SRMIST, for providing XPS analysis of the synthesised nanoparticles.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.R: Conceptualization, Methodology, Data curation, Formal analysis, Writing – original draft, Resources, Investigation, Validation. R.E.V: Supervision, Writing - review & editing.

Corresponding author

Correspondence to R. Ezhil Vizhi.

Ethics declarations

Ethical Statement

The authors declare that this manuscript complies with scientific ethical standards. There are no other persons who satisfied the criteria for authorship and are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us. Furthermore, this article does not contain any studies involving human or animal participants.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, R., Vizhi, R.E. Enhanced Ferromagnetism in Nano-sized Sn0.85Co0.10Fe0.03Mn0.02O2 Dilute Magnetic Semiconductor Synthesised by Sol–Gel Method. J Supercond Nov Magn 37, 1089–1100 (2024). https://doi.org/10.1007/s10948-024-06689-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-024-06689-7

Keywords

Navigation