Log in

Role of Al3+ and Cr3+ Ions on Structural, Optical, Magnetic, and Impedance Properties of AlyCrxZn(0.4-y)Ni(0.6-x)Fe2O4 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Al3+ and Cr3+ ions substituted ZnNiFe2O4 nanoparticles were successfully synthesized by sol-gel method followed by annealing treatment at 1000 °C. X-ray diffraction technique was used to determine the single phase cubic structure of nickel ferrite phase and its jum** length and average crystallite size of AlyCrxZn(0.4-y)Ni(0.6-x)Fe2O4 (N1–N6) nanoparticles. Ni2+ and Zn2+cations were decreased with the increase of Al3+ and Cr3+ ions in nickel ferrite crystalline nanoparticles and the combinations (x + y = 0 − 0.375) initiate considerable influence on the magnetic and electrical response of the nickel ferrite core materials. The vibrational modes and bond coordination of the atoms were investigated by Fourier transform infrared spectroscopy. Grain size and shape of the nanoparticles were examined by using field emission scanning electron microscopy technique. The broad uv–visible light absorbance and band gap values of the samples were obtained from UV-DRS. Raman spectroscopy shows that the surfaces of ZnNiFe2O4 material possess stretching vibrational peaks at 195, 331, 488, and 688 cm−1. The increase in permeability and soft magnetism were determined from the calculated magnetic parameters using vibrating sample magnetometer. The variations in complex impedance values of the samples were recorded from 8.2 × 106 Ω to 1.2 × 105 Ω and it confirms the possibility to develop the storage, charging and discharging of supercapacitor and battery materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors agree with the availability of data transparency and material as per journal guidelines.

References

  1. Lemian, D., Bode, F.: Battery-supercapacitor energy storage systems for electrical vehicles: a review. Energies 15(15), 5683 (2022)

    Article  Google Scholar 

  2. Liang, R., Yongquan, Du., **ao, P., Cheng, J., Yuan, S., Chen, Y., Yuan, J., Chen, J.: Transition metal oxide electrode materials for supercapacitors: a review of recent developments. 11(5), 1248 (2021)

    Google Scholar 

  3. Mohammadi, M.: Aram Rezaei, Ardeshir Khazaei, Shu Xuwei, and Zheng Huajun, Targeted development of sustainable green catalysts for oxidation of alcohol via tungstate-decorated multifunctional amphiphilic carbon quantum dots. ACS Appl. Mater. Interfaces. 11(36), 33194–33206 (2019)

    Article  Google Scholar 

  4. Thoms, E., Sippel, P., Reuter, D., Weib, M., Loidl, A., Krohns, S.: Dielectric study on mixtures of ionic liquids. Sci. Rep. 7, 7463 (2017)

    Article  ADS  Google Scholar 

  5. Belkin, A., Bezryadin, A., Hendren, L., Hubler, A.: Recovery of alumina nanocapacitors after high voltage breakdown. 7, 932 (2017)

    Google Scholar 

  6. Shim, Y., Kim, H.J.: Dielectric relaxation, ion conductivity, solvent rotation, and solvation dynamics in a room-temperature ionic liquid. J. Phys. Chem. 112(35), 11028–11038 (2008)

    Article  Google Scholar 

  7.  Pham, T.N., Huy, T.Q., Le AT.: Spinel ferrite (AFe2O4)-based heterostructured designs for lithium-ion battery, environmental monitoring, and biomedical applications. RSC Adv. 10, 31622–31661 (2020)

    Article  ADS  Google Scholar 

  8. Gopal Reddy, C.V., Manorama, S.V., Rao, V.J.: Semiconducting gas sensor for chlorine based on inverse spinel ferrite. Sens. Actuators B 55, 90–95 (1999)

  9. Zhong, Z.-C., Li, L.-Z., **ao-Hui, Wu., Zhong, X.-X., Tao, Z.-X., Guo, H.-S., Wang, F.-H., Wang, T.: Influence of Nd substitution on the structural, magnetic and electrical properties of NiZnCo ferrites. Ceram. Int. 47, 8781–8786 (2021)

    Article  Google Scholar 

  10. Munir, A., Ahmed, F., Saqib, M., Anis-ur-Rehman, M.: Electrical properties of Ni-Zn ferrite nanoparticles prepared by simplified sol-gel method. J. Supercond. Novel Magn. 28, 983–987 (2015)

    Article  Google Scholar 

  11. Thakur, P., Taneja, S., Chahar, D., Ravelo, B., Thakur, A.: Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 530, 167925 (2021)

    Article  Google Scholar 

  12. Silveyra, J.M., Ferrara, E., Huber, D.L., Monson, T.C.: Soft magnetic materials for a sustainable and electrified world. Science 362, 418 (2018)

    Article  Google Scholar 

  13. Rafique, T., Atif, M., Nadeem, M., Meydan, T., Cuenca, J., Khalid, W., Ali, Z.: Cation distribution in Cr3+ doped Ni0.3Co0.2Zn0.5Fe2−xCrxO4 nanoferrites (0.0≤ x≤ 0.1): structural, magnetic and impedance spectroscopic studies. Phys. B Condensed Matt. 1, 414413 (2023)

  14. Kumar, R., Barman, P.B., Singh, R.R.: An innovative direct non-aqueous method for the development of Co doped Ni-Zn ferrite nanoparticles. Mater. Today. Commun. 27, 102238 (2021)

    Google Scholar 

  15. Tukaram, V., Shinde, S.S., Borade, R.B., Kadam, A.B.: Study of cation distribution, structural and electrical properties of Al-Zn substituted Ni-Co ferrite. Phys. B Phys. Condensed Matt. 577, 411783 (2020)

  16. Massoudi, J., Smari, M., Nouri, K., Dhahri, E., Khirouni, K., Bertaina, S., Bessais, L.: El Kebir Hlil, Magnetic and spectroscopic properties of Ni–Zn–Al ferrite spinel: from the nanoscale to microscale. RSC Adv. 10, 34556–34580 (2020)

    Article  ADS  Google Scholar 

  17. Patil, B.B., Pawar, A.D., Bhosale, D.B., Ghodake, J.S., Thorat, J.B., Shinde, T.J.: Effect of La3+ substitution on structural and magnetic parameters of Ni–Cu–Zn nano-ferrites. J. Nanostructure Chem. 9, 119–128 (2019)

    Article  Google Scholar 

  18. Bharati, V.A., Somvanshi, S.B., Humbe, A.V., Murumkar, V.D., Sondur, V.V., Jadhav, K.M.: Influence of trivalent Al-Cr co-substitution on the structural, morphological and Mossbauer properties of nickel ferrite nanoparticles. J. Alloy. Comp. 821, 153501 (2020)

  19. Deng, L., Shi, Z., Wang, Li., Shou, S.: Fabrication of a novel NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite and its adsorption behavior for Cr(VI) from aqueous solution. J. Phys. Chem. Solids 104, 79–90 (2017)

    Article  ADS  Google Scholar 

  20. Salavati-Niasari, M., Soofivand, F., Sobhani-Nasab, A., Shakouri-Arani, M., Hamadanian, M., Bagheri, S.: Facile synthesis and characterization of CdTiO3 nanoparticles by Pechini sol-gel method. J. Mater. Sci. Mater. Electron. 28, 14965–14973 (2017)

    Google Scholar 

  21. Pourmasoud, S., Sobhani-Nasab, A., Behpour, M., RahimiNasrabadi, M., Ahmadi, F.: Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric cap** agents. J. Mol. Struct. 1157, 607–615 (2018)

    Article  ADS  Google Scholar 

  22. Bucko, M.M., Haberko, K.: Hydrothermal synthesis of nickel ferrite powders, their properties and sintering. J. Eur. Ceram. Soc. 27, 723–727 (2007)

    Article  Google Scholar 

  23. Sepelak, V., Baabe, D., Mienert, D., Schultze, D., Krumeich, F., Litterst, F., Becker, K.: Evolution of structure and magnetic properties with annealing temperature in nanoscale high-energy-milled nickel ferrite. J. Magn. Magn. Mater. 257, 377–386 (2003)

    Article  ADS  Google Scholar 

  24. Sobhani-Nasab, A., Rahimi-Nasrabadi, M., Naderi, H.R., Pourmohamadian, V., Ahmadi, F., Ganjali, M.R., Ehrlich, H.: Sonochemical synthesis of terbium tungstate for develo** high power supercapacitors with enhanced energy densities. Ultrason. Sonochem. 45, 189–196 (2018)

    Article  Google Scholar 

  25. Eghbali-Arani, M., Sobhani-Nasab, A., Rahimi-Nasrabadi, M., Ahmadi, F., Pourmasoud, S.: Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem. 43, 120–135 (2018)

    Article  Google Scholar 

  26. Melo, R., Silva, F., Moura, K., De Menezes, A., Sinfrônio, F.: Magnetic ferrites synthesised using the microwave-hydrothermal method. J. Magn. Magn. Mater. 381, 109–115 (2015)

    Article  ADS  Google Scholar 

  27. Javidan, A., Ramezani, M., Sobhani-Nasab, A., Hosseinpour-Mashkani, S.M.: Synthesis, characterization, and magnetic property of monoferrite BaFe2O4 nanoparticles with aid of a novel precursor. J. Mater. Sci. Mater. Electron. 26, 3813–3818 (2015)

    Google Scholar 

  28. Sankaranarayanan, R., Shailajha, S., Mubina, M.K., Anilkumar, C.P.: Effect of Ni2+ and Fe3+ ion concentrations on structural, optical, magnetic, and impedance response of NiFe2O4 nanoparticles prepared by sol-gel process. J. Superconduct. Novel Magnet. 33, 3631–3642 (2020)

  29. Sankaranarayanan, R., Shailajha, S., Mubina, M.K., Anilkumar, C.P.: Effect of Zn2+ ions on structural, optical, magnetic, and impedance response of Znx@Ni1–xFe2O4 core materials prepared by two-step polyacrylamide gel method. J. Mater. Sci. Mater. Electron. 31, 11833–11846 (2020)

  30. Sankaranarayanan, R., Shailajha, S., Mubina, M.K., Anilkumar, C.P.: Anilkumar, Influence of divalent ions on structural, magnetic and electrical response of CozCdyZnxNi(1-x-y-z)Fe2O4 core materials. J. Magnet. Magnet. Mater. 167892 (2021)

  31. Singh, J.P., Dixit, G., Srivastava, R.C., Agrawal, H.M., Asokan, K.: Looking for the possibility of multiferroism in NiGd0.04Fe1.96O4 nanoparticle system. J. Phys. D App. Phys. A 44, 435306–435312 (2011)

  32. Vigneswari, T., Raji, P.: Structural, magnetic and optical properties of Al-substituted nickel ferrite nanoparticles. Int. J. Mater. Res. 109, 413–421 (2018)

    Article  ADS  Google Scholar 

  33. Hooda, A., Sanghi, S., Agarwal, A., Khasa, S., Hooda, B.: Rietveld refinement and electrical properties of Ni-Zn spinel ferrites. AIP Conf. Proc. 1832, 050018 (2017)

    Article  Google Scholar 

  34. Mubasher, M.M., Hassan, M., Ali, L., Ahmad, Z., Imtiaz, M.A., Aamir, M.F., Rehman, A., Nadeem, K.: Comparative study of frequency‑dependent dielectric properties of ferrites MFe2O4 (M = Co, Mg, Cr and Mn) nanoparticles. Appl. Phys. A 126, 334 (2020)

  35. Singh, A., Singh, A., Singh, S., Tandon, P., Yadav, R.R.: Synthesis, characterization and gas sensing capability of NixCu1-xFe2O4 (0.0 ≤ x ≤ 0.8) nanostructures prepared via sol-gel method. J. Inorg. Organomet. Polymer. Mater. 26, 1392–1403 (2016)

  36. Singh, A., Singh, S., Joshi, B.D., Shukla, A., Yadav, B.C., Tandon, P.: Synthesis, characterization, magnetic properties and gas sensing applications of ZnxCu1-xFe2O4 (0.0 ≤ x ≤ 0.8) nanocomposites. Mater. Sci. Semicond. Processing 27, 934–949 (2014)

  37. Kumar, K.V., Paramesh, D., Reddy, P.V.: Effect of aluminium do** on structural and magnetic properties of Ni-Zn ferrite nanoparticles. World J. Nano Sci. Eng. 5, 68–77 (2015)

  38. Mustafa, G., Islam, M.U., Zhang, W., Jamil, Y., Anwar, A.W., Hussain, M., Ahmad, M.: Investigation of structural and magnetic properties of Ce3+-substituted nanosized Co-Cr ferrites for a variety of applications. J. Alloy. Compound. 618, 428–436 (2014)

  39. Kashyap, R., Kumar, R., Devi, S., Kumar, M., Tyagi, S., Kumar, D.: Ammonia gas sensing performance of nickel ferrite nanoparticles. Mater. Res. Express 6, 125034 (2019)

  40. Devmunde, B.H., Bhalerao, P.S., Solunke, M.B.: Structural morphological and infrared properties of Cd2+ substitutes nickel ferrite particles. J. Phys. 1644, 012021 (2020)

  41. Kulkarni, A.B., Hegde, N.D., Gowda H.S., Mathad, S.N.: Influence of cadmium substitution on structural and mechanical properties of Co‐Ni nano ferrite synthesized by co‐precipitation method. Macromol. Symp. 393, 1900213 (2020)

  42. Lia, F.S., Wanga, L., Wanga, J.B., Zhoua, Q.G., Zhoub, X.Z., Kunkelb, H.P., Williams, G.: Site preference of Fe in nanoparticles of ZnFe2O4. J. Magn. Magn. Mater. 268, 332–339 (2004)

    Article  ADS  Google Scholar 

  43. Babu, B.R., Prasad, M.S.R., Ramesh, K.V., Purushotham, Y.: Structural and magnetic properties of Ni0.5Zn0.5AlxFe2-xO4 nano ferrite system. Mater. Chem. Phys. 148, 585–591 (2014)

  44. Pottker, W.E., Ono, R., Cobos, M.A., Hernando, A., Araujo, J.F., Bruno, A.C., Lourenço, S.A., Longo, E., La Porta, F.A.: Influence of order-disorder effects on the magnetic and optical properties of NiFe2O4 nanoparticles. Ceram. Int. 44(14), 17290–17297 (2018)

  45. Judith Vijaya, J., Bououdina, M.: Structural, optical and magnetic properties of Ni–Zn ferrite nanoparticles prepared by a microwave assisted combustion method. J. Nanosci. Nanotechnol. 16, 689–697 (2016)

  46. Lenin, N., Karthik, A., Srither, S.R., Sridharpanday, M., Surendhiran, S., Balasubramanian, M.: Synthesis, structural and microwave absorption properties of Cr-doped zinc lanthanum nanoferrites Zn1-xCrxLa0.1Fe1.9O4 (x = 0.09, 0.18, 0.27 and 0.36). Ceram. Int. 47(24), 34891–34898 (2021)

  47. Mande, V.K., Bhoyar, D.N., Vyawahare, S.K., Jadhav, K.M.: Effect of Zn2+–Cr3+ substitution on structural, morphological, magnetic and electrical properties of NiFe2O4 ferrite nanoparticles. 29, 15259–15270 (2018)

  48. Chavan, Apparao R., Shankar D. Birajdar, Rahul R. Chilwar, and K. M. Jadhav.: Structural, morphological, optical, magnetic and electrical properties of Al3+ substituted nickel ferrite thin films, Journal of Alloys and Compounds 735, 2287–2297 (2018)

  49. Almessiere, M.A., Dabagh, S., Slimani, Y., Chaudhary, K., Ali, J. and Baykal, A.: Investigation of structural and magnetic properties on Mg1−xZnxFe2−xAlxO4 (0.0≤x≤0.8) nanoparticles. J. Inorganic Organometallic Polymer. Mater. 28, 942–953 (2018)

  50. Manikandan, V., Petrila, I., Vigneselvan, S., Dharmavarapu, R., Juodkazis, S., Kavita, S. and Chandrasekaran, J.: Chandrasekaran, Efficient humidity- sensitive electrical response of annealed lithium substituted nickel ferrite (Li - NiFe2O4) nanoparticles under ideal, real and corrosive environments. J. Mater.  Sci. Mater. Electron. 29, 18660–18667 (2018)

  51. Panwar, K., Tiwari, S., Bapna, K., Heda, N.L., Choudhary, R.J., Phase, D.M., Ahuja, B.L.: The effect of Cr substitution on the structural, electronic and magnetic properties of pulsed laser deposited NiFe2O4 thin films. J. Magnet. Magnet. Mater. 421, 25–30 (2017)

  52. Prabhu, S., Geerthana, M., Sohila, S., Bhalerao, G.M., Harish, S., Navaneethan, M., Hayakawa, Y., Ramesh, R.: Preparation of Cr3+-substituted NiFe2O4 nanoparticles and its microwave absorption properties. J. Supercond. Novel Magn. 32, 1423–1429 (2019)

    Article  Google Scholar 

  53. Kakde, A.S., Belekar, R.M., Wakde, G.C., Borikar, M.A., Rewatkar, K.G., Shingade, B.A.: Evidence of magnetic dilution due to unusual occupancy of zinc on B-site in NiFe2O4 spinel nano-ferrite. J. Solid-State Chem. 300, 122279 (2021)

  54. El-Fadl, A.A., Hassan, A.M. and Kassem, M.A.: Tunable cationic distribution and structure-related magnetic and optical properties by Cr3+ substitution for Zn2+ in nanocrystalline Ni-Zn ferrites. Res. Phys. 28, 104622 (2021)

  55. Baykala, A., Eryiğit, Ş., Amir, M., Güngüneş, H., Sözeri, H., Shirsath, S.E., Sertkol, M. and Asiri, S.M.: Magnetic Properties and cation distribution of bimetallic (Mn–Co) doped NiFe2O4 nanoparticles. J. Inorganic Organometalic Polymers Mater. 27, 1893–1900 (2017)

  56. Pan, X., Sun, A., Han, Y., Zhang, W., Zhao, X.: Structural and magnetic properties of Bi3+ ion doped Ni–Cu–Co nano ferrites prepared by sol-gel auto combustion method. J. Mater. Sci.: Mater. Electron. 30, 4644–4657 (2019)

    Google Scholar 

  57. Culity, B.D., Graham, C.D.: Introduction to magnetic materials, second ed., IEEE press, Wiley (2009)

  58. Varma, M.C., Kumar, A.M., Choudary, G.S.V.R.K., Rao, K.H.: Effect of particle size on saturation magnetization and magnetic anisotropy of Ni0.65ZnO0.35Fe2O4 nanoparticles. Int. J. Nanosci. 11, 1240003 (2012)

  59. Atiq, S., Majeed, M., Ahmad, A., Abbas, S.K., Saleem, M., Riaz, S., Naseem, S.: Synthesis and investigation of structural, morphological, magnetic, dielectric and impedance spectroscopic characteristics of Ni-Zn ferrite nanoparticles, Ceramics International 43(2), 2486–2494 (2017)

    Google Scholar 

  60. Santhosh Kumar, M.V., Shankarmurthy, G.J., Melagiriyappa, E., Nagaraja, K.K., Jayanna, H.S., Telenkov, M.P.: Structural and complex impedance properties of Zn2+ substituted nickel ferrite prepared via low-temperature citrate gel auto-combustion method. J. Mater. Sci. Mater. Electron. 29, 12795–12803 (2018)

  61. Khan, K., Iqbal, Z., Abbas, H., Hassan, A., Nadeem, K.: Ferrimagnetic to antiferromagnetic transition and complex impedance analysis of Cr-doped magnesium ferrite nanoparticles, J. Mater. Sci. Mater. Electron. 31, 8578–8588 (2020)

  62. Mandal, S.K., Chakraborty, S., Dey, P., Saha, B., Nath, T.K.: Zn doped NiFe2O4-Pb (Zr0.58Ti0.42)O3 multiferroic nanocomposites: magneto electric coupling, dielectric and electrical transport. J. Alloy. Compound. 747, 834–845 (2018)

Download references

Acknowledgements

Authors are thankful to DST-FIST sponsored XRD laboratory in Department of Physics, Manonmaniam Sundaranar University, Tamil Nadu, India. The author would also like to thank the Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore, for providing the necessary characterization facilities for experimental work to be done.

Author information

Authors and Affiliations

Authors

Contributions

We declare that the authorship of all authors has been confirmed and each author made a significant contribution to the article. N. R. Rethi—conceptualization, methodology, validation, formal analysis, writing—original draft, visualization; J. Johnson—conceptualization, investigation, visualization; A. Murugeswari—analysis, validation, revision; R. Sankaranarayanan—software, validation, formal analysis, writing—review and editing.

Corresponding author

Correspondence to J. Johnson.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rethi, N.R., Johnson, J., Murugeswari, A. et al. Role of Al3+ and Cr3+ Ions on Structural, Optical, Magnetic, and Impedance Properties of AlyCrxZn(0.4-y)Ni(0.6-x)Fe2O4 Nanoparticles. J Supercond Nov Magn 36, 1443–1454 (2023). https://doi.org/10.1007/s10948-023-06579-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06579-4

Keywords

Navigation