Log in

Design, Verification, and Protection Setting of Superconducting Fault Current Limiter for a 10 kV Power Network

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The level of fault current increases as urban power grid expands in recent years. The traditional relay protection has difficulties in preventing the increased fault current in power grid. Magneto-biased superconducting fault current limiter (SFCL) is a novel technology with two-stage fault current limiting capability of reducing the level of fault current in the first half of the cycle and further in the second cycle. It consists of a double-split reactor, a non-inductive YBCO component, and a fast circuit breaker. Achieving its coordination with relay protection can reduce the reconstruction cost of power system and contribute to the promotion of SFCL. This paper analyzes the SFCL’s operating mechanism at first. Then, a typical 10 kV IEEE 9-bus power system model including the magneto-biased SFCL is built to theoretically investigate the quench and current limiting characteristics and validate the feasibility of SFCL. Finally, a distance protection setting of a simplified 10 kV urban power grid is calculated and the influence of the introduction of the magneto-biased SFCL on the distance protection is quantified. The simulation results of single-phase short-circuit fault show that the zone I and zone II of distance protection can be properly activated and there is little impact on the distance protection of zone III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Baldick, R., Chowdhury, B., Dobson, I., Dong, Z., Gou, B., Hawkins, D., Huang, Z., Joung, M., Kim, J., Kirschen, D., Lee, S., Li, F., Li, J., Li, Z., Liu, C. C., Luo, X., Mili, L., Miller, S., Nakayama, M., Zhang, X.: Vulnerability assessment for cascading failures in electric power systems. (2009). IEEE. https://doi.org/10.1109/PSCE.2009.4839939

  2. Didier, G., Bonnard, C.H., Lubin, T., Lévêque, J.: Comparison between inductive and resistive SFCL in terms of current limitation and power system transient stability. Electr. Pow. Syst. Res. 125, 150–158 (2015). https://doi.org/10.1016/j.epsr.2015.04.002

    Article  Google Scholar 

  3. Park, S., Choi, H., Jeong, I., Choi, H.: Current-limiting properties of a hybrid superconducting flux-offset-type FCL. J. Supercond. Nov. Magn. 30, 3167–3173 (2017). https://doi.org/10.1007/s10948-017-4140-3

    Article  Google Scholar 

  4. Heidary, A., Radmanesh, H., Rouzbehi, K., Mehrizi-Sani, A., Gharehpetian, G.B.: Inductive fault current limiters: a review. Electr. Pow. Syst. Res. 187 (2020). https://doi.org/10.1016/j.epsr.2020.106499.

  5. Lee, G.H., Park, K.B., Sim, J., Kim, Y.G., Oh, I.S., Hyun, O.B., Lee, B.W.: Hybrid superconducting fault current limiter of the first half cycle non-limiting type. IEEE Trans. Appl. Supercond. 19(3), 1888–1891 (2009). https://doi.org/10.1109/TASC.2009.2017873

    Article  ADS  Google Scholar 

  6. Zhang, J., Teng, Y., Qiu, Q., **g, L., Zhao, L., Xu, X., Zhou, W., Zhu, Z., Zhang, G., Lin, L., et al.: Design and development of a 220-kV resistive-type fault current limiters based on 2G-coated conductors. J. Supercond. Nov. Magn. 32, 3779–3787 (2019). https://doi.org/10.1007/s10948-019-05188-4

    Article  Google Scholar 

  7. Chen, X., Gou, H., Chen, Y., Jiang, S., Zhang, M., Pang, Z., Shen, B.: Superconducting fault current limiter (SFCL) for a power electronic circuit: experiment and numerical modelling. Supercond. Sci. Tech. 35(4), 045010 (2022). https://doi.org/10.1088/1361-6668/ac5504

  8. Shen, B., Chen, Y., Li, C., Wang, S., Chen, X.: Superconducting fault current limiter (SFCL): experiment and the simulation from finite-element method (FEM) to power/energy system software. Energy 234, pp. 121251 (2021). https://doi.org/10.1016/j.energy.2021.121251

  9. Heidary, A., Radmanesh, H., Rouzbehi, K., CheshmehBeigi, H.M.: A multifunction high-temperature superconductive power flow controller and fault current limiter. IEEE Trans. Appl. Supercond. 30(5), Art. no. 5601208 (2020). https://doi.org/10.1109/TASC.2020.2966685

  10. Yazdani-Asrami, M., Staines, M., Sidorov, G., Davies, M., Bailey, J., Allpress, N., Glasson, N., Gholamian, S.A.: Fault current limiting HTS transformer with extended fault withstand time. Supercond. Sci. Tech. 32, 35006 (2019). https://doi.org/10.1088/1361-6668/aaf7a8

    Article  Google Scholar 

  11. Kreutz, R., Bock, J., Breuer, F., Juengst, K.P., Kleimaier, M., Klein, H.U., Krischel, D., Noe, M., Steingass, R., Weck, K.H.: System technology and test of CURL 10, a 10 kV, 10 MVA resistive high-Tc superconducting fault current limiter. IEEE Trans. Appl. Supercond 15(2), 1961–1964 (2005). https://doi.org/10.1109/TASC.2005.849345

    Article  ADS  Google Scholar 

  12. Moriconi, F., de La Rosa, F., Darmann, F., Nelson, A., Masur, L.: Development and deployment of saturated-core fault current limiters in distribution and transmission substations. IEEE Trans. Appl. Supercond. 21(3), 1288–1293 (2011). https://doi.org/10.1109/TASC.2011.2104932

    Article  ADS  Google Scholar 

  13. Bock, J., Bludau, M., Dommerque, R., Hobl, A., Kraemer, S., Rikel, M.O., Elschner, S.: HTS fault current limiters — first commercial devices for distribution level grids in Europe. IEEE Trans. Appl. Supercond. 21(3), 1202–1205 (2011). https://doi.org/10.1109/TASC.2010.2099636

    Article  ADS  Google Scholar 

  14. Noe, M., Hobl, A., Tixador, P., Martini, L., Dutoit, B.: Conceptual design of a 24 kV, 1 kA resistive superconducting fault current limiter. IEEE Trans. Appl. Supercond. 22(3), Art. no. 5600304 (2012). https://doi.org/10.1109/TASC.2011.2181284

  15. Lim, S.H., Lim, S.T.: Analysis on coordination of over-current relay using voltage component in a power distribution system with a SFCL. IEEE Trans. Appl. Supercond. 29(5), Art. no. 5603605 (2019). https://doi.org/10.1109/TASC.2019.2904668

  16. Li, B., Li, C., Guo, F.: Application studies on the active SISFCL in electric transmission system and its impact on line distance protection. IEEE Trans. Appl. Supercond. 25(2), Art. no. 5600109 (2015). https://doi.org/10.1109/TASC.2014.2368131

  17. Lim, S.-H., Kim, J.-S., Kim, J.-C.: Analysis on protection coordination of hybrid SFCL with protective devices in a power distribution system. IEEE Trans. Appl. Supercond 21(3), 2170–2173 (2010). https://doi.org/10.1109/tasc.2010.2093593

    Article  ADS  Google Scholar 

  18. Kim, J.S., Kim, J.C., & Lim, S.H.: Study on protection coordination of a flux-lock-type superconducting fault current limiter using switches. IEEE Trans. Appl. Supercond. 26(4), Art. no. 5602104 (2016). https://doi.org/10.1109/TASC.2016.2549551

  19. Sadeghi, M., Abasi, M.: Optimal placement and sizing of hybrid superconducting fault current limiter for protection coordination restoration of the distribution networks in the presence of simultaneous distributed generation. Electr. Pow. Syst. Res. 201 (2021). https://doi.org/10.1016/j.epsr.2021.107541

  20. Guillen, D., Salas, C., Trillaud, F., Castro, L.M., Queiroz, A.T., Sotelo, G.G.: Impact of resistive superconducting fault current limiter and distributed generation on fault location in distribution networks. Electr. Pow. Syst. Res. 186 (2020). https://doi.org/10.1016/j.epsr.2020.106419

  21. Zhu, J., Zhao, Y., Chen, P., Jiang, S., Wang, S., Fang, J., Zhao, X., Wang, H.: Magneto-thermal coupling design and performance investigation of a novel hybrid superconducting fault current limiter (SFCL) with bias magnetic field based on MATLAB/SIMULINK. IEEE Trans. Appl. Supercond. 29(2), Art. no.5601405 (2019). https://doi.org/10.1109/TASC.2019.2892295

Download references

Funding

This work was supported by China State Grid Corporation Science and Technology Project under Grant DG71-22–006 (Corresponding author: Jiahui Zhu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahui Zhu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Yang, Q., Chen, P. et al. Design, Verification, and Protection Setting of Superconducting Fault Current Limiter for a 10 kV Power Network. J Supercond Nov Magn 36, 455–465 (2023). https://doi.org/10.1007/s10948-023-06498-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-023-06498-4

Keywords

Navigation