Log in

Enhanced Magneto-Electric Properties of ZnAl2O4@NiFe2O4 Nanocomposites in Magnetic Sensor Applications

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Ferrimagnetic substance-based Zn0.4Alx@Ni0.6-xFe2O4 (x = 0.0, 0.02, 0.04, 0.06, and 0.08) nanocomposite system was prepared by two-step seed implant polyacrylamide sol–gel method. The structural and frequency-dependent sensitivity of soft magnetic core materials was optimized by the substitution of Al3+ ions. The nonstoichiometric of the constituents has caused by the consisting of a small amount of two secondary phases (Zn-oxide and Zn-Al-oxide) which have been detected from the short intensity of XRD peaks using the Rietveld refinement program. The replacement of Ni2+ ions by Al3+ ions plays a major role in the rearrangements of Ni2+ and Fe3+ ions between octahedral A and tetrahedral B sites and is lead to optimization of magnetic behavior and impedance response. The maximum coercivity (493.73 Oe) and saturation magnetization (58.26 emu/g) observed at x = 0.08 and 0.02, respectively. The resulting magnetic permeability shows that the value is enhanced up to 6.411% within 1 Oe of applied magnetic field. In addition, the impedance value reaches maximum of 1.49 × 105 Ω at sample x = 0.02, reduced to minimum of 4.8 × 103 Ω at x = 0.08. The magnetic sensitivity of ZnAl-NiFe2O4-based core materials at room temperature under 0–5 log f with 0.01 T magnetic field has also been investigated. The magneto-impedance results can be used to substantiate the increase in sensitivity due to the rearrangement of Ni2+ and Fe3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors agree with the availability of data transparency and material as per journal guidelines.

References

  1. Liu, S., Yan, S., Luo, H., He, L., He, J., Zhaowen, H., Huang, Sx., Deng, L.: Size dependent magnetoelectric response of (Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3)-(Ni0.8Zn0.2)Fe2O4 particulate composite. Ceram. Int. 44, 3712–3717 (2018)

    Article  Google Scholar 

  2. Zhao, X., Li, B., Wen, D.: Fabrication technology and characteristics of a magnetic sensitive transistor with nc-Si:H/c-Si heterojunction. Sensors 17, 212 (2017)

    Article  ADS  Google Scholar 

  3. Wang, Y., Li, J., Viehland, D.: Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives. Mater. Today 17, 269–275 (2014)

    Article  Google Scholar 

  4. Guo, L., Wang, C., Zhi, S., Feng, Z., Lei, C., Zhou, Y.: Wide linearity range and highly sensitive MEMS-based micro-fluxgate sensor with double-layer magnetic core made of Fe–Co–B amorphous alloy. Micromachines 8, 352 (2017)

    Article  Google Scholar 

  5. Can, H., Svec P. Jr., Bydzovsky, J., Svec P. Sr., Sözeri, H., Topal, U.: Systematic optimization of the sensing properties of ring core fluxgate sensors with different core diameters and materials. Sens. Actuators, A 255, 94–103 (2017)

    Article  Google Scholar 

  6. Tumanski, S.: Handbook of magnetic measurements, in: Magnetic Sensors. CRC Press. Taylor & Francis Group, ISBN: 9781439829516 (2011). https://doi.org/10.1201/b10979

  7. Ripka, P. (Ed).: Magnetic sensors and magnetometers. Artech House, Technology & Engineering, ISBN: 978-1630817428 (2021). https://www.amazon.com/Magnetic-Sensors-Magnetometers-Pavel-Ripka/dp/1630817422

  8. Lopez-Ortega, A., Estrader, M., Salazar-Alvarez, G., Rocad, A.G., Nogues, J.: Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys. Rep. 553, 1–32 (2015)

    Article  ADS  Google Scholar 

  9. Majetich, S.A.: Magnetic nanoparticles and their applications. In: Koch, C.C. (ed.) Nanostructured Materials: Processing, Properties and Applications, pp. 439–486. William Andrew, Norwich (2007)

    Chapter  Google Scholar 

  10. Bhuvaneswari, M., Sendhilnathan, S., Kumar, M., Tamilarasan, R., Giridharan, N.V.: Synthesis, investigation on structural and electrical properties of cobalt doped Mn–Zn ferrite nanocrystalline powders. Mater. Sci.-Pol. 34(2), 344–353 (2016)

    Article  ADS  Google Scholar 

  11. Yamamoto, Y., Makino, A.: Core losses and magnetic properties of Mn-Zn ferrites with fine grain sizes. J. Magn. Magn. Mater. 133, 500–503 (1994)

    Article  ADS  Google Scholar 

  12. Li Sun, Ru., Zhang, Z.W., Lin, Ju., Cao, E., Zhang, Y.: Structural, dielectric and magnetic properties of NiFe2O4 prepared via sol-gel auto-combustion method. J. Magn. Magn. Mater. 421, 65–70 (2017)

    Article  ADS  Google Scholar 

  13. Joshi, S., Kumar, M., Chhoker, S., Srivastava, G., Jewariya, M., Singh, V.N.: Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014)

    Article  ADS  Google Scholar 

  14. Mahesh Kumar, A., Chaitanya Varma, M., Dube, C.L., Rao, K.H., Kashyap, S.C.: Development of Ni–Zn nanoferrite core material with improved saturation magnetization and DC resistivity. J. Magn. Magn. Mater 320, 1995–2000 (2008)

    Article  ADS  Google Scholar 

  15. Bharadwaj, S., Ramesh, T., Murthy, S.R.: Fabrication of microinductor using nanocrystalline NiCuZn ferrites. J. Electroceram. 31, 81–87 (2013)

    Article  Google Scholar 

  16. Sattar, A.A., EL-Sayed, H.M., AL-suqia, I.: Structural and magnetic properties of CoFe2O4/NiFe2O4 core/shell nanocomposite prepared by hydrothermal method. J. Magn. Magn. Mater. 395, 89–96 (2015)

    Article  ADS  Google Scholar 

  17. Torkian, S., Ghasemi, A., Razavi, R.S.: Magnetic properties of hard-soft SrFe10Al2O19/Co0.8Ni0.2Fe2O4 ferrite synthesized by one-pot sol-gel auto-combustion. J Magn. Magn. Mater. 416, 408–416 (2016)

    Article  ADS  Google Scholar 

  18. Mansour, F., Hemeda, O.M., Abdo, M.A., Nada, W.A.: Improvement on the magnetic and dielectric behavior of hard/soft ferrite nanocomposites. J. Mol. Struct. 1152, 207–214 (2018)

    Article  ADS  Google Scholar 

  19. Raju, P., Murthy, S.R.: Preparation and characterization of Ni–Zn ferrite + polymer nanocomposites using mechanical milling method. Appl. Nanosci. 3, 469–475 (2013)

    Article  ADS  Google Scholar 

  20. Park, J., Hong, Y.-K., Lee, W., Kim, S.-G., Rong, C., Poudyal, N., ** Liu, J., Choi, C.-J.: A simple analytical model for magnetization and coercivity of hard/soft nanocomposite magnets. Sci. Rep. 7, 4960 (2017)

    Article  ADS  Google Scholar 

  21. Deng, L., Shi, Z., Wang, Li., Shou, S.: Fabrication of a novel NiFe2O4/Zn-Al layered double hydroxide intercalated with EDTA composite and its adsorption behavior for Cr(VI) from aqueous solution. J. Phys. Chem. Solids 104, 79–90 (2017)

    Article  ADS  Google Scholar 

  22. Rama Krishna, K., Vijaya Kumar, K., Ravinder, D.: Structural and electrical conductivity studies in nickel-zinc ferrite. Adv. Mater. Phys. Chem. 2, 185–191 (2012)

    Article  Google Scholar 

  23. Wang, S.F., Lv, H.B., Zhou, X.S., Fu, Y.Q., Zu, X.T.: Magnetic nanocomposites through polyacrylamide gel route. Nanosci. Nanotechnol. Lett. 6, 758–771 (2014)

    Article  Google Scholar 

  24. Vigneswari, T., Raji, P.: Structural, magnetic and optical properties of Al-substituted nickel ferrite nanoparticles. Int. J. Mater. Res. 109, 413–421 (2018). https://doi.org/10.3139/146.111628

  25. Deraz, N.M., Alarifi, A.: Processing and evaluation of alumina doped nickel ferrite nano-particles. Int. J. Electrochem. Sci. 7, 4585–4595 (2012)

    Google Scholar 

  26. Anupama, M.K., Srinatha, N., Matteppanavar, S., Angadi, B., Sahoo, B., Rudraswamy, B.: Effect of Zn substitution on the structural and magnetic properties of nanocrystalline NiFe2O4 ferrites. Ceram. Int. 44, 4946–4954 (2018)

    Article  Google Scholar 

  27. Aziz, H.S., Rasheed, S., Khan, R.A., Rahim, A., Nisar, J., Shah, S.M., Iqbal, F., Khan, A.R.: Evaluation of electrical, dielectric and magnetic characteristics of Al–La doped nickel spinel ferrites. RSC Adv. 6, 6589–6597 (2016)

    Article  ADS  Google Scholar 

  28. Sivakami, R., Dhanuskodi, S., Karvembu, R.: Estimation of lattice strain in nanocrystalline RuO2 by Williamson–Hall and size–strain plot methods. 152, 43–50 (2016). https://doi.org/10.1016/j.saa.2015.07.008

  29. Sankaranarayanan, R., Shailajha, S., KaironMubina, M.S., Anilkumar, C.P.: Effect of Ni2+ and Fe3+ ion concentrations on structural, optical, magnetic, and impedance response of NiFe2O4 nanoparticles prepared by sol-gel process. J. Supercond. Nov. Magn. 33, 3631–3642 (2020)

    Article  Google Scholar 

  30. Le Nestour, A., Gaudon, M., Villeneuve, G., Daturi, M., Andriessen, R., Demourgues, A.: Defects in divided zinc−copper aluminate spinels: structural features and optical absorption properties. Inorg. Chem. 46, 4067–4078 (2007)

    Article  Google Scholar 

  31. Khodadadi, A., Farahmandjou, M., Yaghoubi, M., Aman, A.R.: Structural and optical study of Fe3+-doped Al2O3 nanocrystals prepared by new sol gel precursors. Int. J. Appl. Ceram. Technol. 16, 718–726 (2019)

    Article  Google Scholar 

  32. Jain, A., Panwar, A.K., Jha, A.K., Sharma, Y.: Improvement in dielectric, ferroelectric and ferromagnetic characteristics of Ba0.9Sr0.1Ti0.9O3-NiFe2O4 composites. Ceram. Int. 43, 10253–10262 (2017)

    Article  Google Scholar 

  33. Yadav, R.S., Havlica, J., Masilko, J., Kalina, L., Wasserbauer, J., Hajduchova, M., Enev, V., Kuritka, I., Kozakova, Z.: Effects of annealing temperature variation on the evolution of structural and magnetic properties of NiFe2O4 nanoparticles synthesized by starch-assisted sol-gel auto-combustion method. J. Magn. Magn. Mater. 394, 439–447 (2015)

    Article  ADS  Google Scholar 

  34. Anbarasu, S., Ilangovan, S., Nagarethinam, V.S., Srivind, J., Balamurugan, S., Suganya, M., Balu, A.R.: Improvement in the visible light mediated photocatalytic activity of Al2O3 nanoparticles through Zn2+ do**. Nano-Struct. Nano-Objects 17, 67–76 (2019)

    Article  Google Scholar 

  35. Tian, D., Wang, M., Zhou, Y., Jiao, H., She, X., **ao, J., Jiao, S.: Ni0.36Al0.10Cu0.30Fe0.24 metallic inert anode for the electrochemical production of Fe-Ni alloy in molten K2CO3-Na2CO3. Miner. Metals Mater. Soc. ASM Int. 49, 3424–3431 (2018)

    Google Scholar 

  36. Li, Y., Chen, X., Hou, R., Tang, Y.: Maxwell–Wagner characterization of dielectric relaxation in Ni0.8Zn0.2Fe2O4/Sr0.5Ba0.5Nb2O6 composite. Solid State Commun. 137, 120–125 (2006)

    Article  ADS  Google Scholar 

  37. Yuan, Y.F., **a, X.H., Wu, J.B., Yang, J.L., Chen, Y.B., Guo, S.Y.: Nickel foam-supported porous Ni(OH)2/NiOOH composite film 620 as advanced pseudo capacitor material. Electrochim. Acta. 56(6), 2627–2632 (2011)

    Article  Google Scholar 

  38. Saghafi, M., Hosseini, S.A., Shangeneh, S.H., Mohanian, A.H., Salarvand, V., Vahedi, V., Mohajerzadeh, S.H.: Charge storage properties of mixed ternary transition metal ferrites MZnFe oxides (M = Al, Mg, Cu, Fe, Ni) prepared by hydrothermal method. SN Appl. Sci. 1, 1303 (2019)

    Article  Google Scholar 

  39. Remya, K.P., Rajalakshmi, R., Ponpandian, N.: Development of BiFeO3/MnFe2O4 ferrite nanocomposites with enhanced magnetic and electrical properties. Nanoscale Adv. 2, 2968–2976 (2020)

    Article  ADS  Google Scholar 

  40. Esther Rubavathi, P., Venkidu, L., Veera GajendraBabu, M., Venkat Raman, R., Bagyalakshmi, B., Abdul Kader, S.M., Baskar, K., Muneeswaran, M., Giridharan, N.V., Sundarakannan, B.: Structure, morphology and magnetodielectric investigations of BaTi1−xFexO3−δ ceramics. J. Mater. Sci.: Mater. Electron. 30, 5706–5717 (2019)

    Google Scholar 

  41. Gangaswamy, D.R.S., Chaitanya Varma, M., Bharadwaj, S., Sambasiva Rao, K., Rao, K.H.: Comparison study of structural and magnetic properties of magnesium- substituted nickel–zinc ferrites synthesized by solid-state and sol–gel routes. J. Supercond. Nov. Magn. 28, 3599–3606 (2015)

    Article  Google Scholar 

  42. Tiwaria, P., Varma, R., Kanea, S.N., Tatarchukc, T., Mazaleyrate, F.: Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium-nickel nano ferrites. Mater. Chem. Phys. 229, 78–86 (2019)

    Article  Google Scholar 

  43. Gangaswamy, D.R.S., Chaitanya Varma, M., Bharadwaj, S., Sambasiva Rao, K., Rao, K.H.: Comparison study of structural and magnetic properties of magnesium-substituted nickel–zinc ferrites synthesized by solid-state and sol–gel routes. J. Supercond. Nov. Magn. 28, 3599–3606 (2015). https://doi.org/10.1007/s10948-015-3188-1

  44. Tiwaria, P., Varma, R., Kanea, S.N.,  Tatarchukc, T., Mazaleyrate, F.: Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium-nickel nano ferrites. Mater. Chem. Phys. 229, 78–86, (2019). https://doi.org/10.1016/j.matchemphys.2019.02.030

  45. Pan, X., Sun, A., Han, Y., Zhang, W., Zhao, X.: Structural and magnetic properties of Bi3+ ion doped Ni–Cu–Co nano ferrites prepared by sol–gel auto combustion method. J. Mater. Sci.: Mater. Electron. 30, 4644–4657 (2019)

    Google Scholar 

  46. Lia, F.S., Wanga, L., Wanga, J.B., Zhoua, Q.G., Zhoub, X.Z., Kunkelb, H.P., Williams, G.: Site preference of Fe in nanoparticles of ZnFe2O4. J. Magn. Magn. Mater. 268, 332–339 (2004)

    Article  ADS  Google Scholar 

  47. Rajesh Babu, B., Prasad, M.S.R., Ramesh, K.V., Purushotham, Y.: Structural and magnetic properties of Ni0.5Zn0.5AlxFe2-xO4 nano ferrite system. Mater. Chem. Phys. 148, 585–591 (2014)

    Article  Google Scholar 

  48. Sankaranarayanan, R., Shailajha, S., KaironMubina, M.S., Anilkumar, C.P.: Effect of Zn2+ ions on structural, optical, magnetic, and impedance response of Znx@Ni1–xFe2O4 core materials prepared by two-step polyacrylamide gel method. J. Mater. Sci.: Mater. Electron. 31, 11833–11846 (2020)

    Google Scholar 

  49. Chavan, G.N., Belavi, P.B., Naik, L.R., Bammannavar, B.K., Ramesh, K.P., Kumar, S.: Electrical and magnetic properties of nickel substituted cadmium ferrites. Int. J. Sci. Technol. Res. 2, 82–89 (2013)

    Google Scholar 

  50. Abdullah Dar, M., Shah, J., Siddiqui, W.A., Kotnala, R.K.: Study of structure and magnetic properties of Ni–Zn ferrite nano-particles synthesized via co-precipitation and reverse micro-emulsion technique. Appl. Nanosci. 4, 675–682 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to DST-FIST sponsored XRD laboratory in the Department of Physics, Manonmaniam Sundaranar University, Tamil Nadu, India. The authors would also like to thank the Indian Institute of Geomagnetism, Mumbai, for the financial support under the Bharat Ratna Dr. APJ Abdul Kalam project. We acknowledge the Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore, for providing the necessary characterization facilities for experimental work to be done.

Author information

Authors and Affiliations

Authors

Contributions

We declare that the authorship of all authors has been confirmed and each author made a significant contribution to the article. R. Sankaranarayanan: conceptualization, methodology, validation, formal analysis, writing—original draft, visualization; S. Shailajha: conceptualization, investigation, visualization; S. Seema: software, validation, formal analysis, writing—review and editing; M. S. Kairon Mubina: formal analysis, validation.

Corresponding author

Correspondence to R. Sankaranarayanan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankaranarayanan, R., Shailajha, S., Seema, S. et al. Enhanced Magneto-Electric Properties of ZnAl2O4@NiFe2O4 Nanocomposites in Magnetic Sensor Applications. J Supercond Nov Magn 36, 693–709 (2023). https://doi.org/10.1007/s10948-022-06492-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06492-2

Keywords

Navigation