Log in

Structure and Magnetic Properties of Mechanically Alloyed Fe90Al8C2 (wt.%) Powders

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The structure, morphological, thermal, and magnetic properties of the mechanically alloyed Fe90Al8C2 (wt.%) powders were investigated by using X-ray diffraction (XRD), scanning electron microscopy, differential scanning calorimetry, and vibrating sample magnetometry, respectively. The XRD analysis reveals a mixture of three disordered solid solutions (Fe1-SS, Fe2-SS, and Fe3-SS) with different lattice parameters and crystallite sizes. The saturation magnetization swings between 128 and 133 emu/g, and the coercivity is between 90 and 62 Oe. After heating to 1100 °C, the XRD results show the formation of nanocrystalline (Fe, Al)3C-type carbide and two Fe-type solid solutions. The heated samples exhibit enhanced magnetic properties with enhanced saturation magnetization (Ms = 132.97–179.76 emu/g) and reduced coercivity (Hc = 46.59–53.63 Oe). The composite Fe-Al-C structure can be considered a potential candidate for soft magnetic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zuazo, I., Hallstedt, B., Lindahl, B., Selleby, M., Soler, M., Etienne, A., Perlade, A., Hasenpouth, D., Massardier-Jourdan, V., Cazottes, S., Kleber, X.: Low-density steels: complex metallurgy for automotive applications. JOM J. Mine. Met. Mater. Soc. 66(19), 1747–1758 (2014)

    Article  Google Scholar 

  2. Devan, J.H., Tortorelli, P.F.: Oxidation/sulfidation of iron-aluminium alloys. Mater. High. Temp. 11(11–4), 30–35 (1993)

    Article  Google Scholar 

  3. Rao, V.S., Baligidad, R., Raja, V.: Effect of Al content on oxidation behaviour of ternary Fe-Al-C alloys. Intermetallics 10(11), 73–84 (2002)

    Google Scholar 

  4. Wyslocki, J.J.: Magnetic properties, microstructure and magnetic domain structure in anisotropic Fe-Al-C permanent magnet. Phys. Status Solidi (A) 151(12), 421–433 (1995)

    Article  ADS  Google Scholar 

  5. Giza, K., Bala, H., Wysłocki, J.J., Szymura, S.: Corrosion resistance of the Fe-Al- C permanent magnet alloy. Intermetallics 6(15), 357–362 (1998)

    Article  Google Scholar 

  6. Wysłocki, J.J.: Magnetic properties of the anisotropic Fe-Al-C permanent magnet within the temperature range of 4.2 to 1100 K. Phys. Status Solidi (A) 153(12), 487–500 (1996)

    Article  ADS  Google Scholar 

  7. Bonnenberg, D., Burzo E., Kirchmayr, H.R., Nakamichi, T., Wijn, H.P.J.: Magnetic alloys for technical applications. Hard Magnetic Alloys, Landolt-Börnstein III 19 i2, (1992)

  8. Wyłǒki, J.J.: Coercivity mechanism in the anisotropic Fe-Al-C permanent magnet. Phys. Status Solidi (A) 155(12), 485–495 (1996)

    Article  ADS  Google Scholar 

  9. Schneider, A., Falat, L., Sauthoff, G., Frommeyer, G.: Microstructures and mechanical properties of Fe3Al-based Fe–Al–C alloys. Intermetallics 13(12), 1322–1331 (2005)

    Article  Google Scholar 

  10. Jiménez, J.J.A., Frommeyer, G.: The ternary iron aluminum carbides. J. Alloy. Compd. 509, 2729–2733 (2011)

    Article  Google Scholar 

  11. Weiyan, L., Lin, L., Li, W., Yanlin, H., Shuigen, H.: Thermodynamic assessment and experimental investigation of Fe-Al-C system. J. Mater. Sci. Technol. 24, 771–774 (2009)

    Google Scholar 

  12. Phan, A.T., Paek, M.-K., Kang, Y.-B.: Phase equilibria and thermodynamics of the Fe–Al–C system: critical evaluation, experiment and thermodynamic optimization. Acta Mater. 79, 1–15 (2014)

    Article  ADS  Google Scholar 

  13. Suryanarayana, C., Al-Joubori, A.A., Wang, Z.: Nanostructured materials and nanocomposites by mechanical alloying: an overview. Metal Mater. Int. 1–13 (2021)

  14. Suryanarayana, C.: Mechanical alloying: a novel technique to synthesize advanced materials. Encyclopedia of Iron, Steel, and Their Alloys, pp. 159–177 (2019)

  15. Su, S.S., Chang, I.: Review of production routes of nanomaterials. Commercialization of nanotechnologies–a case study approach, vols. 1 sur 2, pp. 15–29. Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-56979-6_2

  16. Zhang, D.L., Adam, G., Ammundsen, B.: Phase formation during mechanical alloying and subsequent low-temperature heat treatment of Al–27.4 at% Fe–28.7 at%C powders. J. Alloys. Compd. 340(1–2), 226–230 (2002)

    Article  Google Scholar 

  17. Minamino, Y., Koizumi, Y., Tsuji, N., Hirohata, N., Mizuuchi, K., Ohkanda, Y.: Bulk Fe-Al-C nanoalloys made by mechanically alloying with subsequent spark plasma sintering and their mechanical properties. Solid State Phenom. 101(11), (2005)

  18. Takeuchi, A., Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46(12), 2817–2829 (2005)

    Article  Google Scholar 

  19. Ungár, T., Schafler, E., Gubicza, J.: Nanomaterials determined by X-ray line-profile analysis. Bulk Nanostructured Materials, pp. 361–383 (2009)

  20. Lutterotti, L.: A Rietveld analysis program designed for the internet and experiment integration. Acta Crystallogr. A 56, 54 (2000)

    Article  Google Scholar 

  21. Rietveld, H.M.: The Rietveld method. Phys. Scr. 89(19), 098002 (2014)

    Article  ADS  Google Scholar 

  22. Zeng, Q., Baker, I.: Magnetic properties and thermal ordering of mechanically alloyed Fe–40 at% Al. Intermetallics 14(14), 396–405 (2006)

    Article  Google Scholar 

  23. Oleszak, D., Shingu, P.H.: Mechanical alloying in the Fe-Al system. Mater. Sci. Eng. A 181, 1217–1221 (1994)

    Article  Google Scholar 

  24. Wang, G., Xu, Y., Qian, P., Su, Y.: Vacancy concentration of films and nanoparticles. Comput. Mater. Sci. 173, 109416 (2019)

    Article  Google Scholar 

  25. Suryanarayana, C., Sharma, S.: Lattice contraction during amorphization by mechanical alloying. J. Appl. Phys. 104(110), 103503 (2008)

    Article  ADS  Google Scholar 

  26. Lu, L., Lai, M.O., Zhang, S.: Diffusion in mechanical alloying. J. Mater. Process. Technol. 67(1–3), 100–104 (1997)

    Article  Google Scholar 

  27. Lemdani, F., Azzaz, M., Taïbi, K., Lounis, A.: Effect of mechanical alloying on the structure and properties of iron powders. Defect and Diffusion Forum, Trans Tech Publications Ltd. 364, 132–138 (2015)

    Article  Google Scholar 

  28. Azzaza, S., Alleg, S., Suňol, J.J.: Microstructure characterization and thermal stability of the ball milled iron powders. J. Therm. Anal. Calorim. 119(12), 1037–1046 (2015)

    Article  Google Scholar 

  29. Alleg, S., Souilah, S., Suñol, J.J.: Thermal stability of the nanostructured powder mixtures prepared by mechanical alloying. In Applications of Calorimetry in a Wide Context-Differential Scanning Calorimetry, Isothermal Titration Calorimetry and Microcalorimetry. IntechOpen (2013)

  30. Plascak, J.A., Zamora, L.E., Alcazar, G.P.: Ising model for disordered ferromagnetic Fe−Al alloys. Phys. Rev. B 61(15), 3188 (2000)

    Article  ADS  Google Scholar 

  31. Amils, X., Nogués, J., Surinach, S., Muñoz, J.S., Lutterotti, L., Gialanella, S., Baró, M.D.: Structural, mechanical and magnetic properties of nanostructured FeAl alloys during disordering and thermal recovery. Nanostruct. Mater. 11(16), (1999)

  32. Gialanella, S., Amils, X., Baro, M.D., Delcroix, P., Le Caër, G., Lutterotti, L., Suriñach, S.: Microstructural and kinetic aspects of the transformations induced in a FeAl alloy by ball-milling and thermal treatments. Acta Mater. 46(19), 33 (1998)

    Google Scholar 

  33. Krasnowski, M.: Phase transformations during mechanical alloying and subsequent heating of FeAlB powders. J. Alloys Compd. 706, 110–115 (2017)

    Article  Google Scholar 

  34. Zuhailawati, H., Geok, T.C., Basu, P.: Microstructure and hardness characterization of mechanically alloyed Fe–C elemental powder mixture. Mater. Des. 31(14), 2211–2215 (2010)

    Article  Google Scholar 

  35. Chaira, D., Mishra, B.K., Sangal, S.: Efficient synthesis and characterization of iron carbide powder by reaction milling. Powder Technol. 191(11–2), 149–154 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Algerian General Directory of Scientific Research and Technological Development (DGRSDT). The authors thank Mr. Foued Khammaci from the LM2S laboratory for the VSM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Lemdani.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemdani, F., Alleg, S., Mechri, H. et al. Structure and Magnetic Properties of Mechanically Alloyed Fe90Al8C2 (wt.%) Powders. J Supercond Nov Magn 36, 207–215 (2023). https://doi.org/10.1007/s10948-022-06456-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06456-6

Keywords

Navigation