Log in

Modeling and Analysis of HTS Distribution Transformers Under Various Conditions Using FEM

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Distribution transformers with different ratings are one of the significant components in power systems. However, the high drawback of conventional transformers is the temperature instability under various faults. To overcome this problem, a new generation of transformers, called high−temperature superconducting (HTS) transformers, has been introduced in recent decades. These transformers use windings with closed to zero resistance that are immersed in the liquid nitrogen (LN2). In the same rating of power, the losses, volume, and weight of the HTS transformer when compared to conventional one are very low. In this paper, a 20 kV/0.4 kV, 630 kVA HTS distribution transformer with Bi–2223/Ag coils is considered. In following, under unbalanced load condition that is modeled with a short–circuit fault, the electromagnetic and thermal performances of a transformer are assessed using the finite element method (FEM). In electromagnetic analysis, the AC loss and Lorentz forces of HTS coils are analyzed for normal and abnormal conditions. Besides, the thermal analysis is done to study the increasing temperature of HTS coils under short–circuit faults. The results show the good reliability of HTS coils due to not exceeding the critical temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Coelho, L.D.S., Mariani, V.C., Guerra, F.A., Da Luz, M.V.F., Leite, J.V.: Multiobjective optimization of transformer design using a chaotic evolutionary approach. IEEE Trans. Magnet. 50(2), (2014)

  2. Cheema, M.A.M., Fletcher, J.E., Dorrell, D.: A practical approach for the global optimization of electromagnetic design of 3-phase core-type distribution transformer allowing for capitalization of losses. IEEE Trans. Magnet. 49(5), 2117–2120 (2013)

  3. Arjona, M.A., Hernandez, C., Cisneros-Gonzalez, M.: Hybrid optimum design of a distribution transformer based on 2-D FE and a manufacturer design methodology. IEEE Trans. Magnet 46(8), 2864–2867 (2010)

    Article  ADS  Google Scholar 

  4. Rahman, M.A.A.: Distribution network modelling and analysis of the application of HTS transformer. Ph.D. Dissertation, Auckland University, Auckland, New Zealand (2012)

  5. Saxena, A.K.: High-temperature superconductors. Springer Series in Materials Science: 125, Heidelberg, Germany (2010)

  6. Kalsi, S.S.: Applications of high temperature superconductors to electric power equipmen. John Wiley and sons, IEEE, Hoboken, New Jersey, USA (2011)

  7. Kwon, Y.K., et al.: Development of HTS motor for industrial applications at KERI & DOOSAN. IEEE Trans. Appl. Supercond. 17(2), 1587–1590 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. Qu, T. et al.: Development and testing of a 2.5 kW synchronous generator with a high temperature superconducting stator and permanent magnet rotor. Supercond. Sci. Technol. 27(4), (2014)

  9. Cui, J.B. et al.: Safety considerations in the design, fabrication, testing, and operation of the DC bias coil of a saturated iron-core superconducting fault current limiter. IEEE Trans. Appl. Supercond. 23(3), (2013)

  10. Hornfeldt, S., Albertsson, O., Bonmann, D., Konig, F.: Power transformer with superconducting windings. IEEE Trans. Mag. 29(6), 3556–3558 (1993)

    Article  ADS  Google Scholar 

  11. Funaki, K., et al.: Development of 500 kVA-class oxide superconducting power transformer operated at liquid-nitrogen temperature. Cryogenics 38(2), 211–220 (1998)

    Article  ADS  Google Scholar 

  12. Zueger, H.: 630 kVA high temperature superconducting transformer. Cryogenics 38(11), 1169–1172 (1998)

    Article  ADS  Google Scholar 

  13. **, J., Chen, X.: Development and technology of HTS transformers. Res. Commun. 1(1), (2007)

  14. Baldwin, T.L., Ykema, J.I., Allen, C.L., Langston, J.L.: Design optimization of high-temperature superconducting power transformers. IEEE Trans. Appl. Supercond. 13(2), 2344–2347 (2003)

    Article  ADS  Google Scholar 

  15. Daneshmand, S.V., Heydari, H.: Multiphysics approach in HTS transformers with different winding schemes. IEEE Trans. Appl. Supercond. 24(2), (2014)

  16. Qiu, Q., Dai, Sh., Wang, Z., Ma, T., Hu, L., Zhu, Z., Zhang, G.: Winding design and electromagnetic analysis for a 1250 kVA HTS transformer. IEEE Trans. Appl. Supercond. 25(1), 1–8 (2014)

    Google Scholar 

  17. Ainslie, M.D., Hu, D., Zou, J., Cardwell, D.A.: Simulating the in-field AC and DC performance of high-temperature superconducting coils. IEEE Trans. Appl. Supercond. 25(3), (2015)

  18. Lai, L., Gu, C., Qu, T., Zhang, M., Li, Y., Liu, R., Coombs, T., Han, Z.: Simulation of AC loss in small HTS coils with iron core. IEEE Trans. Appl. Supercond. 25(3), (2014)

  19. Daneshmand, S.V., Heydari, H.: Hysteresis loss improvement in HTS transformers using hybrid winding schemes. IEEE Trans. Appl. Supercond. 22(2), (2012)

  20. Daneshmand, S.V., Heydari, H.: Design and analysis of a three phase HTS transformer. Proc. 7th ICTPE. Near East University, Lefkosa, Cyprus, no. 19, pp. 91–94, (2011)

  21. Juybari, A.G., Besmi, M.R.: Calculation of AC loss for high temperature superconductor transformers using two-dimensional finite element method. Int. J. Electron. Commun. Electric. Eng. (IJECEE), (2008)

  22. Rafajdus, P., Hrabovcová, V., Šušota, M., Vojenčiak, M.: Design of superconducting traction transformer and its thermal analysis. 18th Int. Conf. Electric. Mach. (ICEM). 4(1), 1–21 (2014)

  23. Masur, L.J., Kellers, J., Li, F., Fleshler, S., Podtburg, E.R.: Industrial high temperature superconductors: Perspectives and milestones. IEEE Trans. Appl. Supercond. 12(1), 1145–1150 (2002)

    Article  ADS  Google Scholar 

  24. Say, M.G.: The performance and design of alternating current machines, 3rd edn. CBS Publishers and Distributors, New Delhi, India (2002)

    Google Scholar 

  25. Stavrev, S.: Modelling of high temperature superconductors for AC power applications. Ph.D. Dissertation, Technical University of Varna, Varna, Bulgaria (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolmajid Dejamkhooy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadpour, A., Dejamkhooy, A. Modeling and Analysis of HTS Distribution Transformers Under Various Conditions Using FEM. J Supercond Nov Magn 35, 1847–1856 (2022). https://doi.org/10.1007/s10948-022-06210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06210-y

Keywords

Navigation