Log in

A Novel Pragmatic Magnetic Dam Structure for Ultra-high Field (>27 T) Superconducting Magnet

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The magnetic dam (MD) is a promising passive protection method for high-temperature superconducting (HTS) magnets. Urgent problems remain to be resolved in order to put it into practice. This article deals with the deformation problem of the magnetic dam in the background magnet quench. A novel copper–steel composite structure was proposed, which could improve the MD’s mechanical properties. As a comparison criterion, the electromagnetic stress and deformation of the magnetic dam during the background field magnet quench are simulated and analyzed. The effect of different thicknesses of stainless steel on the strength and the protection performance of the magnetic dam is also discussed. The results revealed that the original copper magnetic dam does not possess sufficient strength to survive from the low-temperature superconducting (LTS) magnet quench in the HTS/LTS magnetic system. The composite structure is more apt to be used as a passive protection method for the insert HTS magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Breschi, M., Cavallucci, L., Ribani, P.L., Gavrilin, A.V., Weijers, H.W.: Analysis of quench in the nhmfl rebco prototype coils for the 32 t magnet project. Supercond. Sci. Technol. 29(5), 055002 (2016). https://doi.org/10.1088/0953-2048/29/5/055002

    Article  ADS  Google Scholar 

  2. ahn, S., Kim, K., Kim, K., Hu, X., Painter, T., Dixon, I., Kim, S., Bhattarai, .R., Noguchi, S., Jaroszynski, J., Larbalestier, D.C.: 45.5-tesla irect-current magnetic field generated with a high-temperature uperconducting magnet. Nature 570(7762), 496–499 (2019). https://doi.rog/10.1038/s41586-019-1293-1

  3. Hahn, S., Park, D.K., Bascunan, J., Iwasa, Y.: Hts pancake coils without turn-to-turn insulation. IEEE Trans. Appl. Superconduct. 21(3), 1592–1595 (2011). https://doi.org/10.1109/TASC.2010.2093492

    Article  ADS  Google Scholar 

  4. Hong, Z., Campbell, A.M., Coombs, T.A.: Numerical solution of critical state in superconductivity by finite element software. Supercond. Sci. Technol. 19(12), 1246–1252 (2006). https://doi.org/10.1088/0953-2048/19/12/004

    Article  ADS  Google Scholar 

  5. Kim, Y., Yang, D.G., Lee, J., Kim, W.J., Kim, S.H., Lee, H.: Numerical analysis on bifurcated current flow in no-insulation magnet. IEEE Trans. Appl. Superconduct.. 24(3), 1–4 (2014). https://doi.org/10.1109/TASC.2013.2287397

    Article  Google Scholar 

  6. Wang, Y., Chan, W.K., Schwartz, J.: Self-protection mechanisms in no-insulation (re)ba 2 cu 3 o x high temperature superconductor pancake coils. Supercond. Sci. Technol. 29(4), 045007 (2016). https://doi.org/10.1088/0953-2048/29/4/045007

    Article  ADS  Google Scholar 

  7. Wang, Y., Song, H., Xu, D., Li, Z.Y., **, Z., Hong, Z.: An equivalent circuit grid model for no-insulation hts pancake coils. Supercond. Sci. Technol. 28(4), 045017 (2015). https://doi.org/10.1088/0953-2048/28/4/045017

    Article  ADS  Google Scholar 

  8. Wang, Y., Song, H., Yuan, W., **, Z., Hong, Z.: Ram** turn-to-turn loss and magnetization loss of a no-insulation (re)ba2cu3ox high temperature superconductor pancake coil. J. Appl. Phys. 121(11), 113903 (2017). 10.1063/1.4978593.http://aip.scitation.org/doi/10.1063/1.4978593

  9. **a, J., Bai, H., Lu, J., Gavrilin, A., Zhou, Y., Weijers, H.: Electromagnetic modeling of rebco high field coils by theh-formulation. Supercond. Sci. Technol. 28(12), 125004 (2015). https://doi.org/10.1088/0953-2048/28/12/125004

    Article  ADS  Google Scholar 

  10. Zhang, H., Zhang, M., Yuan, W.: An efficient 3d finite element method model based on the t-a formulation for superconducting coated conductors. Supercond. Sci. Technol. 30(2), 024005 (2017). https://doi.org/10.1088/1361-6668/30/2/024005

  11. Berrospe-Juarez, E., Zermeño, V.M.R., Trillaud, F., Gavrilin, A.V., Grilli, F., Abraimov, D.V., Hilton, D.K., Weijers, H.W.: Estimation of losses in the (re)bco two-coil insert of the nhmfl 32 t all-superconducting magnet. IEEE Trans. Appl. Supercond. 28(3), 1–5 (2018). https://doi.org/10.1109/TASC.2018.2791545

    Article  Google Scholar 

  12. Choi, J., Kim, S.K., Kim, S., Sim, K., Park, M., Yu, I.K.: Characteristic analysis of a sample hts magnet for design of a 300 kw hts dc induction furnace. IEEE Trans. Appl. Supercond. 26(3), 1–5 (2016). https://doi.org/10.1109/TASC.2016.2524686. http://ieeexplore.ieee.org/document/7400948/

  13. Hahn, S., Kim, Y., Song, J., Voccio, J., Ling, J., Bascunan, J., Iwasa, Y.: A 78-mm/7-t multi-width no-insulation rebco magnet: Key concept and magnet design. IEEE Trans. Appl. Supercond. 24(3), 1–5 (2014). https://doi.org/10.1109/TASC.2013.2288151. https://ieeexplore.ieee.org/document/6651673/

  14. Seungyong Hahn, Dong Keun Park, Voccio, J., Bascunan, J., Iwasa, Y.: No-insulation (ni) hts inserts for>1 ghz lts/hts nmr magnets. IEEE Trans. Appl. Supercond. 22(3), 4302405 (2012). https://doi.org/10.1109/TASC.2011.2178976. http://ieeexplore.ieee.org/document/6099575/

  15. Weijers, H.W., Hannahs, S.T., Murphy, T.P., Markiewicz, W.D., Gavrilin, A.V., Voran, A.J., Viouchkov, Y.L., Gundlach, S.R., Noyes, P.D., Abraimov, D.V., Bai, H.: Progress in the development and construction of a 32-t superconducting magnet. IEEE Trans. Appl. Supercond. 26(4), 1–7 (2016). https://doi.org/10.1109/TASC.2016.2517022

    Article  Google Scholar 

  16. Yoon, S., Kim, J., Cheon, K., Lee, H., Hahn, S., Moon, S.H.: 26 t 35 mm all-gdba 2 cu 3 o 7– x multi-width no-insulation superconducting magnet. Supercond. Sci. Technol. 29(4), 04LT04 (2016). https://doi.org/10.1088/0953-2048/29/4/04LT04

  17. Zhang, X., Liu, H., Shi, Y., Liu, F., Tan, Y., Hong, Z., Ma, H., Lei, L.: Progress in the development of a 25 t all superconducting magnet with small-scale ybco insert coil. IEEE Trans. Appl. Supercond. 30(4), 1–5 (2020). https://doi.org/10.1109/TASC.2020.2969104. https://ieeexplore.ieee.org/document/8968345/

  18. Zhao, Y., Zhu, J.M., Jiang, G.Y., Chen, C.S., Wu, W., Zhang, Z.W., Chen, S.K., Hong, Y.M., Hong, Z.Y., **, Z.J., Yamada, Y.: Progress in fabrication of second generation high temperature superconducting tape at shanghai superconductor technolog. Supercond. Sci. Technol. 32(4), 044004 (2019). https://doi.org/10.1088/1361-6668/aafea5

    Article  ADS  Google Scholar 

  19. Liu, J., Wang, Q., Qin, L., Zhou, B., Wang, K., Wang, Y., Wang, L., Zhang, Z., Dai, Y., Liu, H., Hu, X., Wang, H., Cui, C., Wang, D., Wang, H., Sun, J., Sun, W., **ong, L.: World record 32.35 tesla direct-current magnetic field generated with an all superconducting magnet. Supercond. Sci. Technol. 33(3), 03LT01 (2020). https://doi.org/10.1088/1361-6668/ab714e. https://iopscience.iop.org/article/10.1088/1361-6668/ab714e

  20. Wang, Y., Bai, H., Li, J., Zhang, M., Yuan, W.: Electromagnetic modelling using t-a formulation for high-temperature superconductor (re)ba2cu3o x high field magnets High Voltage 5(2), 218–226 (2020). https://doi.org/10.1049/hve.2019.0120

  21. Wang, Y., Wang, Q., Liu, J., Cheng, J., Liu, F.: Insert magnet and shim coils design for a 27 t nuclear magnetic resonance spectrometer with hybrid high and low temperature superconductors. Supercond. Sci. Technol. 33(6), 064004 (2020). https://doi.org/10.1088/1361-6668/ab861a

    Article  ADS  Google Scholar 

  22. Bascuñán, J., Hahn, S., Lecrevisse, T., Song, J., Miyagi, D., Iwasa, Y.: An 800-mhz all-rebco insert for the 1.3-ghz lts/hts nmr magnet program-a progress report. IEEE Trans. Appl. Supercond. 26(4) (2016) 10.1109/TASC.2015.2512045

  23. Bascuñán, J., Michael, P., Hahn, S., Lecrevisse, T., Iwasa, Y.: Construction and test results of coil 2 of a three-coil 800-mhz rebco insert for the 1.3-ghz high-resolution nmr magnet. IEEE Trans. Appl. Supercond. 27(4) (2017). 10.1109/TASC.2016.2641341

  24. Fazilleau, P., Borgnic, B., Chaud, X., Debray, F., Lécrevisse, T., Song, J.B.: Metal-as-insulation sub-scale prototype tests under a high background agnetic field. Supercond. Sci. Technol. 31(9), 095003 (2018). https://doi.org/10.1088/1361-6668/aad225

  25. Kim, J., Yoon, S., Cheon, K., Shin, K.H., Hahn, S., Kim, D.L., Lee, S., Lee, H., Moon, S.H.: Effect of resistive metal cladding of hts tape on the characteristic of no-insulation coil. IEEE Trans. Appl. Supercond. 26(4), 1–6 (2016). https://doi.org/10.1109/TASC.2016.2541687. http://ieeexplore.ieee.org/document/7433459/

  26. Qin, L., Wang, L., Liu, J., Wang, K., Zhou, B., Wang, Q.: Refined circuit model for current distribution of the no-insulation hts insert magnet. Supercond. Sci. Technol. (2021). https://doi.org/10.1088/1361-6668/abfc28

    Article  Google Scholar 

  27. Wang, X., Hahn, S., Kim, Y., Bascuñán, J., Voccio, J., Lee, H., Iwasa, Y.: Turn-to-turn contact characteristics for an equivalent circuit model of no-insulation rebco pancake coil. Supercond. Sci. Technol. 26(3), 035012 (2013). https://doi.org/10.1088/0953-2048/26/3/035012. https://iopscience.iop.org/article/10.1088/0953-2048/26/3/035012

  28. Yanagisawa, Y., Sato, K., Yanagisawa, K., Nakagome, H., **, X., Takahashi, M., Maeda, H.: Basic mechanism of self-healing from thermal runaway for uninsulated rebco pancake coils. Phys. C: Supercond. Appl. 499, 40–44 (2014). https://doi.org/10.1016/j.physc.2014.02.002. https://linkinghub.elsevier.com/retrieve/pii/S0921453414000239

  29. An, S., Choi, K., Noguchi, S., Im, C., Bang, J., Bong, U., Kim, J., Hahn, S.: Afeasibility study on ”magnetic dam” to absorb magnetic energy in ni hts magnet during quench IEEE Trans. Appl. Supercond. 30(4), 1–5 (2020). 10.1109/TASC.2020.2972221. https://ieeexplore.ieee.org/document/8986759/

  30. Qin, L., Liu, J., Wang, L., Wang K., Zhou, B., Wang, Y., Sun, H., Niu, C., Wang Q.: A high efficiency protecting scheme for hts inserts in case of background magnet quenches. IEEE Trans. Magnet. p. 1 (2021). https://doi.org/10.1109/TMAG.2021.3082801

  31. Wang, L., Wang, Q., Li, L., Qin, L., Liu, J., Li, Y., Hu, X.: The effect of winding conditions on the stress distribution in a 10.7 t rebco insert for the 25.7 t superconducting magnet. IEEE Trans. Appl. Supercond. 28(3), 1-5(2018). https://doi.org/10.1109/TASC.2017.2778739

  32. Hilton, D.K., Gavrilin, A.V., Trociewitz, U.P.: Practical fit functions for transport critical current versus field magnitude and angle data from (re)bco coated conductors at fixed low temperatures and in high magnetic fields. Supercond. Sci. Technol. 28(7), 074002 (2015). https://doi.org/10.1088/0953-2048/28/7/074002

    Article  ADS  Google Scholar 

  33. Amemiya, N., Murasawa, S.i., Banno, N., Miyamoto, K.: Numerical modelings of superconducting wires for ac loss calculations. Phys. C: Supercond. Appl. 310(1-4), 16–29 (1998) 10.1016/S0921-4534(98)00427-4. http://www.sciencedirect.com/science/article/pii/S0921453498004274

Download references

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China under Grants 51777205, 51807191, and 11545004; the Bureau of Frontier Sciences and Education, Chinese Academy of Sciences under Grants QYZDJSSWJSC012; National Key Research and Development Project under Grants 2020YFF-01014702; and China’s Synergetic Extreme Condition User Facility (SECUF) Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lang Qin or Qiuliang Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Liu, J., Wang, L. et al. A Novel Pragmatic Magnetic Dam Structure for Ultra-high Field (>27 T) Superconducting Magnet. J Supercond Nov Magn 35, 1483–1489 (2022). https://doi.org/10.1007/s10948-022-06199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06199-4

Keywords

Navigation