Log in

Magnetic Performance of Bi Architecture α-Fe2O3/NiFe2O4 Nanocomposite

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Bi architecture Fe-based system shows the most extensive applications spawned from memory to optoelectronic device. With this line of understanding, we herein synthesized α-Fe2O3/NiBixFe2-xO4 (0 ≤ x ≤ 0.20) by sono-wave-driven wet chemical route. The grain size of the sample reduced with increasing Bi do** concentration even though the morphological features remain the same. The presence of α-Fe2O3 and NiFe2O4 phases in the XRD pattern confirms the formation of composite samples. Bi do** has a significant impact on controlling the phase fraction as well as magnetic properties of the nanocomposite. The nanocomposite with x = 0.20 showed a drastic reduction in saturation magnetization (more than 7 times) as compared to the un-doped sample. The alteration of coercivity and exchange bias in the nanocomposite with Bi do** is well correlated with the fraction of NiFe2O4 phase present in the corresponding sample. Moreover, Bi do** induces the deterioration in magnetic properties in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Winkler, E.L., Lima, E., Tobia, D., Saleta, M.E., Troiani, H.E., Agostinelli, E., Fiorani, D., Zysler, R.D.: Origin of magnetic anisotropy in ZnO/CoFe2O4 and CoO/CoFe2O4 core/shell nanoparticle systems. Appl. Phys. Lett. 101, 252405 (2012)

  2. Tian, Z.M., Yuan, S.L., Yin, S.Y., Liu, L., He, J.H., Duan, H.N., Li, P., Wang, C.H.: Exchange bias effect in a granular system of NiFe2O4 nanoparticles embedded in an antiferromagnetic NiO matrix. Appl. Phys. Lett. 93, 222505 (2008)

  3. Zan, F., Ma, Y., Ma, Q., Xu, Y., Dai, Z., Zheng, G., Wu, M., Li, G.: Magnetic and impedance properties of nanocomposite CoFe2O4/Co0.7Fe0.3 and single-phase CoFe2O4 prepared via a one-step hydrothermal synthesis. J. Am. Ceram. Soc. 96, 3100 (2013)

  4. Hazra, S., Patra, M.K., Vadera, S.R., Ghosh, N.N.: A novel but simple one-pot synthetic route for preparation of (NiFe2O4)x-(BaFe12O19)1–x composites. J. Am. Ceram. Soc. 95, 60 (2012)

    Article  Google Scholar 

  5. Roy, D., Shivakumara, C., Anil Kumar, P.S.: Observation of the exchange spring behavior in hard–soft-ferrite nanocomposite. J. Magn. Magn. Mater. 321, L11 (2009)

    Article  ADS  Google Scholar 

  6. Liu, K.L., Yuan, S.L., Duan, H.N., Zheng, X.F., Yin, S.Y., Tian, Z.M.: Exchange bias in Fe and Ni codoped CuO nanocomposites. J. Appl. Phys. 107, 023911 (2010)

  7. Sort, J., Suriñach, S., Muñoz, J.S., Baró, M.D., Nogués, J., Chouteau, G., Skumryev, V., Hadjipanayis, G.C.: Improving the energy product of hard magnetic materials. Phys. Rev. B. 65, 174420 (2002)

  8. Wang, J., Chen, Q., Zeng, C., Hou, B.: Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv. Mater. 16, 137 (2004)

    Article  Google Scholar 

  9. Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., Li, G.: Monodisperse MFe2O4 (M = Fe Co, Mn) Nanoparticles. J. Am. Ceram. Soc. 126, 273 (2004)

    Google Scholar 

  10. Parkin, S.S.P., Roche, K.P., Samant, M.G., Rice, P.M., Beyers, R.B., Scheuerlein, R.E., O’Sullivan, E.J., Brown, S.L., Bucchigano, J., Abraham, D.W., Lu, Y., Rooks, M., Trouilloud, P.L., Wanner, R.A., Gallagher, W.J.: Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory. J. Appl. Phys. 85, 5828 (1999)

    Article  ADS  Google Scholar 

  11. Kools, J.C.S.: Exchange-biased spin-valves for magnetic storage. IEEE Trans. Magn. 32, 3165 (1996)

    Article  ADS  Google Scholar 

  12. Morales, R., Li, Z.-P., Olamit, J., Liu, K., Alameda, J.M., Schuller, I.K.: Role of the antiferromagnetic bulk spin structure on exchange bias. Phys. Rev. Lett. 102, 097201, (2009)

  13. Neupane, D., Ghimire, M., Adhikari, H., Listi, A., Mishra, S.R.: Synthesis and magnetic study of magnetically hard-soft SrFe12-yAlyO19-xWt.%Ni0.5Zn0.5Fe2O4 nanocomposites. AIP Adv. 7, 055602 (2017)

  14. Shams, N.N., Rahman, M.T., Lai, C.-H.: Defect mediated tuning of exchange bias in IrMn/CoFe nanostructure. J. Appl. Phys. 105, 07D722 (2014)

    Article  Google Scholar 

  15. Jena, S., Mishra, D.K., Soam, A., Jakhar, N., Mallick, P.: Control growth of NiFe2O4 phase in thermal annealed α-Fe2O3/NiFe2O4 nanocomposites for the beneficial magnetic application. Appl. Phys. A 127, 519 (2021)

    Article  ADS  Google Scholar 

  16. Shoushtari, M.Z., Emami, A., Ebrahim, S., Ghahfarokhi, M.: Effect of bismuth do** on the structural and magnetic properties of zinc-ferrite nanoparticles prepared by a microwave combustion method. J. Magn. Magn. Mater. 419, 572 (2016)

    Article  ADS  Google Scholar 

  17. Anjum, S., Sehar, F., Awan, M.S., Zia, R.: Role of Bi3+ substitution on structural, magnetic and optical properties of cobalt spinel ferrite. Appl. Phys. A 122, 436 (2016)

    Article  ADS  Google Scholar 

  18. Hussain, S., Tavakoli, M.M., Waleed, A., Virk, U.S., Yang, S., Waseem, A., Fan, Z., Nadeem, M.A.: Nanotextured spikes of α-Fe2O3/NiFe2O4 composite for efficient Photoelectrochemical oxidation of water. Langmuir 34, 3555 (2018)

    Article  Google Scholar 

  19. Franco Júnior, A., Zapf, V., Egan, P.: Magnetic properties of nanoparticles of CoxFe(3−x)O4(0.05⩽x⩽1.6) prepared by combustion reaction. J. Appl. Phys. 101, 09M506 (2007)

  20. Kodama, R.H., Berkowitz, A.E., McNiff, E.J., Foner, S.: Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77, 394 (1996)

    Article  ADS  Google Scholar 

  21. Kharkovskii, A.I., Nizhankovskii, V.I., Kravchenko, E.A., Orlov, V.G.: Magnetic properties of the bismuth oxide α-Bi2O3. Z. Naturforsch. 51a, 665 (1996)

  22. Nakagomi, F.: The influence of cobalt population on the structural properties of CoxFe3−xO4. J. Appl. Phys. 101, 09M514 (2007)

    Article  Google Scholar 

  23. Kazmi, J., Ooi, P.C., Goh, B.T., Lee, M.K., Wee, M.F.M.R., Karim, S.S.A., Raza, S.R.A., Mohmed, M.A.: Bi-do** improves the magnetic properties of zinc oxide nanowires. RSC Adv. 10, 23297 (2020)

    Article  ADS  Google Scholar 

  24. Henrard, D., Vuong, Q.L., Delangre, S., Valentini, X., Nonclercq, D., Gonon, M.F., Gossuin, Y.: Monitoring of superparamagnetic particle sizes in the langevin law regime. J. Nanomater. 6409210 (2019)

  25. Anumol, C.N., Chithra, M., Govindaraj Shalini, M., Sahoo, S.C.: Effect of annealing on structural and magnetic properties of NiFe2O4/ZnFe2O4 nanocomposites. J. Magn. Magn. Mater. 469, 81 (2019)

    Article  ADS  Google Scholar 

  26. Gong, W.J., Liu, W., Li, D., Guo, S., Liu, X.H., Feng, J.N., Li, B., Zhao, X.G., Zhang, Z.D.: Exchange bias effect in NiO/NiFe2O4 nanocomposites. J. Appl. Phys. 109, 07D711 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. M. Gupta and Mr. L. Behera UGC-DAE CSR, Indore, for XRD measurement. Authors are also acknowledged to Prof. D. Samal for providing experimental facilities of SQUID for magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. K. Mishra or P. Mallick.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, S., Mishra, D.K., Sarangi, S.N. et al. Magnetic Performance of Bi Architecture α-Fe2O3/NiFe2O4 Nanocomposite. J Supercond Nov Magn 35, 833–838 (2022). https://doi.org/10.1007/s10948-021-06115-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06115-2

Keywords

Navigation