Log in

Comparison of the Dopant Effect and Sample Preparation Method on Y-123 Superconductors

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The detailed comparison of the effects of Co and CoFe2O4 dopants and preparation methods (solid-state reaction method and sol–gel methods) have been studied on structural, electrical, superconducting, and mechanical properties of Y123 bulk superconductors. The do** amounts of Co and CoFe2O4 were chosen up to 0.10 wt. %. X-ray powder diffraction (XRD) method, temperature-dependent resistance measurement (R-T), and Vickers microhardness analyses were performed to characterize prepared samples. XRD analysis showed that all samples have Pmmm symmetry of orthorhombic crystal structure; intensities and width of the diffraction lines were affected by do** material, but, independent of the preparation method. Although all samples crystallize in orthorhombic structure and exhibit superconductivity behavior, with increasing do** rate the critical transition temperatures of the samples showed a significant decrease and broadened to superconducting temperature transition width. This is more evident in CoFe2O4-doped Y-123 samples produced by sol–gel method. As the applied force increased, it was observed that the microhardness values of the Co-doped samples increased while the CoFe2O4-doped samples decreased, regardless of the sample preparation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Onnes, H.K.: Further Experiments with Liquid Helium. D. On the change of the electrical resistance of pure metals at very low temperatures, etc. V. The Disappearance of the resistance of mercury, in: K. Gavroglu, Y. Goudaroulis (Eds.), Through Meas. to Knowl. Sel. Pap. Heike Kamerlingh Onnes 1853–1926, Springer Netherlands, Dordrecht. 264–266 (1991). https://doi.org/10.1007/978-94-009-2079-8_16

  2. Müller, J.G.B.A.: Possible high Tc superconductivity in the Ba−La−Cu−O system. Z. Phys. B - Condens. Matter. 64, 189–193 (1986). https://doi.org/10.1007/BF01303701

    Article  ADS  Google Scholar 

  3. Harabor, A., Rotaru, P., Harabor, N.A., Nozar, P., Rotaru, A.: Orthorhombic YBCO-123 ceramic oxide superconductor: structural, resistive and thermal properties. Ceram. Int. 45, 2899–2907 (2019). https://doi.org/10.1016/j.ceramint.2018.07.272

    Article  Google Scholar 

  4. Aliabadi, A., Akhavan Farshchi, Y., Akhavan, M.: A new Y-based HTSC with Tc above 100 K. Phys. C Supercond. Its Appl. 469, 2012–2014 (2009). https://doi.org/10.1016/j.physc.2009.09.003

  5. Guner, S.B., Zalaoglu, Y., Turgay, T., Ozyurt, O., Ulgen, A.T., Dogruer, M., Yildirim, G.: A detailed research for determination of Bi/Ga partial substitution effect in Bi-2212 superconducting matrix on crucial characteristic features. J. Alloys Compd. 772, 388–398 (2019). https://doi.org/10.1016/j.jallcom.2018.09.071

    Article  Google Scholar 

  6. Ozturk, O., Nefrow, A.R.A., Bulut, F., Ada, H., Turkoz, M.B., Yildirim, G.: Effect of Co/Cu partial replacement on fundamental features of Y-123 ceramics. J. Mater. Sci. Mater. Electron. 31, 7630–7641 (2020). https://doi.org/10.1007/s10854-020-03281-2

    Article  Google Scholar 

  7. Safran, S., Bulut, F., Nefrow, A.R.A., Ada, H., Ozturk, O.: Characterization of the CoFe2O4/Cu displacement effect in the Y123 superconductor matrix on critical properties. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04578-y

    Article  Google Scholar 

  8. Slimani, Y., Hannachi, E., Ekicibil, A., Almessiere, M.A., Ben Azzouz, F.: Investigation of the impact of nano-sized wires and particles TiO2 on Y-123 superconductor performance. J. Alloys Compd. 781, 664–673 (2019). https://doi.org/10.1016/j.jallcom.2018.12.062

  9. Jasim, S.E., Jusoh, M.A., Hafiz, M., Jose, R.: Fabrication of superconducting YBCO nanoparticles by electrospinning. Procedia Eng. 148, 243–248 (2016). https://doi.org/10.1016/j.proeng.2016.06.595

    Article  Google Scholar 

  10. Yeoh, L.M., Ahmad, M.: Characterization and synthesis of Y0.9Ca0.1Ba1.8Sr0.2Cu3O7-δvia combining sol-gel and solid-state route. J. Non. Cryst. Solids. 354, 4012–4018 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.04.008

  11. Ulgen, A.T., Turgay, T., Terzioglu, C., Yildirim, G., Oz, M.: Role of Bi/Tm substitution in Bi-2212 system on crystal structure quality, pair wave function and polaronic states. J. Alloys Compd. 764, 755–766 (2018). https://doi.org/10.1016/j.jallcom.2018.06.142

    Article  Google Scholar 

  12. Öztürk, H., Safran, S.: Effects of carbon-encapsulated nano boron addition on superconducting parameters of BSCCO. J. Alloys Compd. 731, 831–838 (2018). https://doi.org/10.1016/j.jallcom.2017.10.095

    Article  Google Scholar 

  13. Safran, S.: Critical current density and mechanical performance of MgB2 superconductors prepared with different magnesium sources. Ceram. Int. 45, 10243–10249 (2019). https://doi.org/10.1016/j.ceramint.2019.02.077

    Article  Google Scholar 

  14. Matskevich, N.I., Wolf, T.: Thermochemical investigation of YBa2Cu3O7−δ superconductor doped by lutetium. J. Alloys Compd. 614, 415–419 (2014). https://doi.org/10.1016/j.jallcom.2014.06.125

    Article  Google Scholar 

  15. Yilmaz, M., Dogan, O.: Structural and superconducting properties in Y0.6Gd0.4Ba2(Nb)Cu3O7−y cuprates doped with niobium. J. Rare Earths. 30, 241–244 (2012). https://doi.org/10.1016/S1002-0721(12)60031-3.

  16. Klemkiene, T., Raudonis, R., Beganskiene, A., Zalga, A., Grigoraviciute, I., Kareiva, A.: Scandium and gallium substitution effects in the (Y1−xScx)Ba2Cu4O8 and (Y1−xGax)Ba2Cu4O8 superconducting oxides. Mater. Chem. Phys. 119, 208–213 (2010). https://doi.org/10.1016/j.matchemphys.2009.08.059

    Article  Google Scholar 

  17. Alloul, H., Bobroff, J., Mendels, P.: Comment on “Al NMR local probe of local moments induced by an Al impurity in high-Tc cuprate La1.85Sr0.15CuO4”. Phys. Rev. Lett. 78, 2494–2494 (1997). https://doi.org/10.1103/PhysRevLett.78.2494

  18. Zhou, Y.X., Scruggs, S., Salama, K.: Effects of ionic do** on superconducting properties of melt textured YBa2(Cu1−xMx)3O7-y(M = Co, Ni, Zn or Ga) large grains. Supercond. Sci. Technol. 19, S556–S561 (2006). https://doi.org/10.1088/0953-2048/19/7/s26

    Article  ADS  Google Scholar 

  19. Bouchoucha, I., Ben Azzouz, F., Annabi, M., Zouaoui, M., Ben Salem, M.: The study on the ZnO and Zn0.95Mn0.05O added YBCO system: investigation of microstructure and transport properties. Phys. C Supercond. 470, 262–268 (2010). https://doi.org/10.1016/j.physc.2009.11.034

  20. Slimani, Y., Hannachi, E., Ben Salem, M.K., Hamrita, A., Ben Salem, M., Ben Azzouz, F.: Excess conductivity study in nano-CoFe2O4-added YBa2Cu3O7−d and Y3Ba5Cu8O18±x superconductors. J. Supercond. Nov. Magn. 28, 3001–3010 (2015). https://doi.org/10.1007/s10948-015-3144-0

  21. Slimani, Y., Hannachi, E., Ben Salem, M.K., Hamrita, A., Varilci, A., Dachraoui, W., Ben Salem, M., Ben Azzouz, F.: Comparative study of nano-sized particles CoFe2O4 effects on superconducting properties of Y-123 and Y-358. Phys. B Condens. Matter. 450, 7–15 (2014). https://doi.org/10.1016/j.physb.2014.06.003

  22. Sahoo, B., Routray, K.L., Panda, B., Samal, D., Behera, D.: Excess conductivity and magnetization of CoFe2O4 combined with Y1Ba2Cu3O7-δ as a superconductor. J. Phys. Chem. Solids. 132, 187–196 (2019). https://doi.org/10.1016/j.jpcs.2019.04.035

    Article  ADS  Google Scholar 

  23. Slimani, Y., Hannachi, E., Ben Azzouz, F., Ben Salem, M.: Comparative study of the effect of magnetic nanoparticle CoFe2O4 on fluctuation-induced conductivity of Y-123 and Y-358 superconductors. J. Supercond. Nov. Magn. 32, 511–519 (2019). https://doi.org/10.1007/s10948-018-4746-0

  24. Elizabeth, S., Anand, A., Bhat, S.V., Subramanyam, S.V., Bhat, H.L.: Influence of cobalt do** on superconducting transition in as-grown YBCO single crystals. Solid State Commun. 109, 333–338 (1999). https://doi.org/10.1016/S0038-1098(98)00553-5

    Article  ADS  Google Scholar 

  25. Wang, W.T., Pu, M.H., Lei, M., Zhang, H., Wang, Z., Zhang, H., Cheng, C.H., Zhao, Y.: Enhanced flux pinning properties in superconducting YBa2Cu3O7−z films by a novel chemical do** approach. Phys. C Supercond. 493, 104–108 (2013). https://doi.org/10.1016/j.physc.2013.03.039

    Article  ADS  Google Scholar 

  26. Ahmadipour, M., Ain, M.F., Ahmad, Z.A.: Effects of annealing temperature on the structural, morphology, optical properties and resistivity of sputtered CCTO thin film. J. Mater. Sci. Mater. Electron. 28, 12458–12466 (2017). https://doi.org/10.1007/s10854-017-7067-3

    Article  Google Scholar 

  27. Terzioglu, C., Yilmazlar, M., Ozturk, O., Yanmaz, E.: Structural and physical properties of Sm-doped Bi1.6Pb0.4Sr2Ca2−xSmxCu3Oy superconductors, Phys. C Supercond. Its Appl. 423, 119–126 (2005). https://doi.org/10.1016/j.physc.2005.04.008

  28. Diko, P., Duvigneaud, P.H., Lanckbeen, A., Van Moer, A., Naessens, G., Deltour, R.: Influence of iron do** on the microstructure of YBa2(Cu1−xFex)O7−y ceramics. J. Am. Ceram. Soc. 76, 2856–2864 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb04027.x

    Article  Google Scholar 

  29. Wimbush, S.C., Yu, R., Bali, R., Durrell, J.H., MacManus-Driscoll, J.L.: Addition of ferromagnetic CoFe2O4 to YBCO thin films for enhanced flux pinning. Physica C 470, S223 (2010). https://doi.org/10.1016/j.physc.2009.10.117

    Article  ADS  Google Scholar 

  30. Sahoo, B., Behera, D.: Study of transport and elastic properties of YBCO superconductor by inclusion of GnPs. Phys. C Supercond. Its Appl. 578, 1353748 (2020). https://doi.org/10.1016/j.physc.2020.1353748

    Article  ADS  Google Scholar 

  31. Sumiya, H., Ishida, Y., Arimoto, K., Harano, K.: Real indentation hardness of nano-polycrystalline cBN synthesized by direct conversion sintering under HPHT. Diam. Relat. Mater. 48, 47–51 (2014). https://doi.org/10.1016/j.diamond.2014.06.009

    Article  ADS  Google Scholar 

  32. Asikuzun, E., Ozturk, O.: Theoretical and experimental comparison of micro-hardness and bulk modulus of orthorhombic YBa2Cu3−xZnxO superconductor nanoparticles manufactured using sol-gel method. Sak. Univ. J. Sci. 24, 854–864 (2020). https://doi.org/10.16984/saufenbilder.676028

    Article  Google Scholar 

  33. Asikuzun, E., Ozturk, O., Cetinkara, H.A., Yildirim, G., Varilci, A., Yilmazlar, M., Terzioglu, C.: Vickers hardness measurements and some physical properties of Pr2O3 doped Bi-2212 superconductors. J. Mater. Sci. Mater. Electron. 23, 1001–1010 (2012). https://doi.org/10.1007/s10854-011-0537-0

    Article  Google Scholar 

  34. Habanjar, K., Najem, A., Abdel-Gaber, A.M., Awad, R.: Effect of pelletization pressure on the physical and mechanical properties of (Bi, Pb)-2223 superconductors. Phys. Scr. 95, 65702 (2020). https://doi.org/10.1088/1402-4896/ab7f46

    Article  Google Scholar 

  35. Sangwal, K.: On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys. 63, 145–152 (2000). https://doi.org/10.1016/S0254-0584(99)00216-3

    Article  Google Scholar 

  36. Awad, R., Abou Aly, A.I., Kamal, M., Anas, M.: Mechanical properties of (Cu0.5Tl0.5)-1223 substituted by Pr. J. Supercond. Nov. Magn. 24, 1947–1956 (2011). https://doi.org/10.1007/s10948-011-1150-4

  37. Feltham, P., Banerjee, R.: Theory and application of micro-indentation in studies of glide and cracking in single crystals of elemental and compound semiconductors. J. Mater. Sci. 27(6), 1626–1632 (1992). https://doi.org/10.1007/BF00542926

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Safran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk, O., Nefrow, A.R.A., Bulut, F. et al. Comparison of the Dopant Effect and Sample Preparation Method on Y-123 Superconductors. J Supercond Nov Magn 34, 2821–2832 (2021). https://doi.org/10.1007/s10948-021-06046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06046-y

Keywords

Navigation