Log in

Magnetic Properties and Reversal Modes of Electrodeposited CoCr Nanowire Arrays with Different Diameters

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The better understanding of magnetization reversal in impurity added magnetic nanowires (NWs) would allow for their efficient use in future anisotropic spintronic devices. Herein, a pulsed electrodeposition method was employed to fabricate CoCr NW arrays in anodic aluminum oxide membranes with different pore diameters ranging from 30 to 60 nm. Hysteresis loop and first-order reversal curve measurements were used to evaluate magnetic properties and reversal modes of the resulting NWs, indicating the effective role of the NW diameter in the magnetization reversal. While a soft magnetic phase with local magnetostatic interactions was observed for 60 nm diameter NWs, soft and hard magnetic phases together with a wide distribution of magnetic interactions were evidenced for CoCr NWs with a diameter of 30 nm. A transverse domain wall mode was estimated to be responsible for the magnetization reversal at the diameter of 30 nm, whereas a combination of vortex and transverse domain wall propagation played a role at diameters equal and greater than 40 nm. The magnetic characteristics of the CoCr NWs were found to arise from changes in the magnetocrystalline anisotropy contribution oriented along the [100] direction, weakening coercivity, and squareness when increasing the NW diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

NWs:

Nanowires

AAO:

Anodic aluminum oxide

PED:

Pulsed electrodeposition

FORC:

First-order reversal curve

CFD:

Coercive field distribution

IFD:

Interaction field distribution

TDW:

Transverse domain wall

VDW:

Vortex domain wall

References

  1. Gowda, S.R., Leela Mohana Reddy,  A., Zhan, X.,  Ajayan, P.M.: Nano Lett. 11(8), 3329–3333 (2011)

  2. Zhang, A., Zheng, G., Lieber, C.M.: Nanowires: building blocks for nanoscience and nanotechnology. Springer (2016)

  3. George, S.: Nanomaterial properties: implications for safe medical applications of nanotechnology. In Nanotechnology in Endodontics. Springer, Cham, pp. 45–69 (2015)

  4. Wang, R., Chen, C., Zheng, Y., Wang, H., Liu, J.W., Yu, S.H.: Mater. Chem. Front. (2020)

  5. Varvaro, G., Casoli, F.: Ultra-high-density magnetic recording: storage materials and media designs. CRC Press  (2016)

  6. Sun, L., Hao, Y., Chien, C.L., Searson, P.C.: IBM J. Res. Dev. 49(1), 79–102 (2005)

    Article  Google Scholar 

  7. Lupu, N.: Electrodeposited nanowires and their applications. BoD–Books on Demand (2010)

  8. Schönenberger, C., Van der Zande, B., Fokkink, L., Henny, M., Schmid, C., Krüger, M., Bachtold, A., Huber, R., Birk, H., Staufer, U.: J. Phys. Chem. B 101(28), 5497–5505 (1997)

    Article  Google Scholar 

  9. Chakarvarti, S.: Radiat. Meas. 44(9–10), 1085–1092 (2009)

    Article  Google Scholar 

  10. Zhang, Z., Dai, S., Blom, D.A., Shen, J.: Chem. Mater. 14(3), 965–968 (2002)

    Article  Google Scholar 

  11. Choudhari, K., Kulkarni, S.D., Santhosh, C., George, S.D.: Microporous mesoporous mater. 271, 138–145 (2018)

    Article  Google Scholar 

  12. Sulka, G.D., Zaraska, L., Stepniowski, W.J.: In Encyclopedia of nanoscience and nanotechnology, vol. 11, pp. 261–349. American Scientific Publishers (2011)

  13. Lee, W.: JOM 62(6), 57–63 (2010)

    Article  Google Scholar 

  14. Sousa, C., Leitao, D., Proenca, M., Ventura, J., Pereira, A., Araujo, J.: Appl. Phys. Rev. 1(3), 031102 (2014)

  15. Nasirpouri, F.: Electrodeposition of nanostructured materials. Springer (2017)

  16. Chandrasekar, M., Pushpavanam, M.: Electrochim. Acta 53(8), 3313–3322 (2008)

    Article  Google Scholar 

  17. Ramazani, A., Almasi Kashi, M., Montazer, A.: J. Appl. Phys. 115(11), 113902 (2014)

  18. Han, X., Liu, Q., Wang, J., Li, S., Ren, Y., Liu, R., Li, F.: J. Phys. D Appl. Phys. 42(9), 095005 (2009)

  19. Esmaeili, A., Kashi, M.A., Ramazani, A., Montazer, A.: J. Magn. Magn. Mater. 397, 64–72 (2016)

    Article  ADS  Google Scholar 

  20. Koohbor, M., Soltanian, S., Najafi, M., Servati, P.: Mater. Chem. Phys. 131(3), 728–734 (2012)

    Article  Google Scholar 

  21. Shamaila, S., Sharif, R., Riaz, S., Ma, M., Khaleeq-ur-Rahman, M., Han, X.: J. Magn. Magn. Mater. 320(12), 1803–1809 (2008)

    Article  ADS  Google Scholar 

  22. Ramazani, A., Almasi-Kashi, M., Safari, Z.: J. Alloys Compd. 609, 206–210 (2014)

    Article  Google Scholar 

  23. Chaure, N., Coey, J.: J. Magn. Magn. Mater. 303(1), 232–236 (2006)

    Article  ADS  Google Scholar 

  24. Najafi, M., Alemipour, Z., Hasanzadeh, I., Aftabi, A., Soltanian, S.: J. Supercond. Nov. Magn. 28(1), 95–101 (2015)

    Article  Google Scholar 

  25. da Câmara Santa Clara Gomes, T., Marchal, N., Abreu Araujo, F., Piraux, L.: Appl. Phys. Lett. 115(24), 242402 (2019)

  26. Sousa, C., Leitao, D., Proenca, M., Apolinario, A., Correia, J., Ventura, J., Araujo, J.: J. Nanotechnol. 22(31), 315602 (2011)

  27. Cheng, W., Steinhart, M., Gösele, U., Wehrspohn, R.B.: J. Mater. Chem. 17(33), 3493–3495 (2007)

    Article  Google Scholar 

  28. Akhtarianfar, S., Ramazani, A., Almasi-Kashi, M., Montazer, A.: Appl. Phys. A 124(5), 379 (2018)

    Article  ADS  Google Scholar 

  29. Ramazani, A., Asgari, V., Montazer, A., Kashi, M.A.: Curr. Appl. Phys. 15(7), 819–828 (2015)

    Article  ADS  Google Scholar 

  30. Ramazani, A., Kashi, M.A., Ghanbari, S., Eshaghi, F.: J. Magn. Magn. Mater. 324(19), 3193–3198 (2012)

    Article  ADS  Google Scholar 

  31. Almasi-Kashi, M., Ramazani, A., Izadi, S., Jafari-Khamse, E.: Phys. Scr. 90(8), 085803 (2015)

  32. Pike, C., Ross, C., Scalettar, R., Zimanyi, G.: Phys. Rev. B 71(13), 134407 (2005)

  33. Roberts, A.P., Heslop, D., Zhao, X., Pike, C.R.: Rev. Geophys. 52(4), 557–602 (2014)

    Article  ADS  Google Scholar 

  34. Béron, F., Clime, L., Ciureanu, M., Ménard, D., Cochrane, R.W., Yelon, A.: J. Appl. Phys. 101(9), 09J107 (2007)

    Article  Google Scholar 

  35. Winklhofer, M., Dumas, R.K., Liu, K.: J. Appl. Phys. 103(7), 07C518 (2008)

    Article  Google Scholar 

  36. Montazer, A., Ramazani, A., Kashi, M.A., Zavašnik, J.: J. Phys. D Appl. Phys. 49(44), 445001 (2016)

  37. Béron, F., Clime, L., Ciureanu, M., Ménard, D., Cochrane, R., Yelon, A.: J. Nanosci. Nanotechnol. 8(6), 2944–2954 (2008)

    Article  Google Scholar 

  38. Montazer, A., Ramazani, A., Kashi, M.A., Zavašnik, J.: J. Mater. Chem. C 4(45), 10664–10674 (2016)

    Article  Google Scholar 

  39. Vivas, L., Vazquez, M., Escrig, J., Allende, S., Altbir, D., Leitao, D., Araujo, J.: Phys. Rev. B 85(3), 035439 (2012)

  40. Ivanov, Y.P., Vázquez, M., Chubykalo-Fesenko, O.: J. Phys. D Appl. Phys. 46(48), 485001 (2013)

  41. Samanifar, S., Kashi, M.A., Ramazani, A., Alikhani, M.: J. Magn. Magn. Mater. 378, 73–83 (2015)

    Article  ADS  Google Scholar 

  42. Alikhani, M., Ramazani, A., Kashi, M.A., Samanifar, S., Montazer, A.: J. Magn. Magn. Mater 414, 158–167 (2016)

    Article  ADS  Google Scholar 

  43. Tejo, F., Vidal-Silva, N., Espejo, A., Escrig, J.: J. Appl. Phys. 115(17), 17D136 (2014)

    Article  Google Scholar 

  44. Lavín, R., Gallardo, C., Palma, J., Escrig, J., Denardin, J.: J. Magn. Magn. Mater. 324(15), 2360–2362 (2012)

    Article  ADS  Google Scholar 

  45. Skomski, R., Zhou, J.: In Advanced magnetic nanostructures, pp. 41–90. Springer (2006)

  46. Skomski, R., Zeng, H., Zheng, M., Sellmyer, D.J.: Phys. Rev. B 62(6), 3900 (2000)

    Article  ADS  Google Scholar 

Download references

Funding

The Authors confirm that no funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version. The contribution of each author of our manuscript is as follows: B. Alirezaei performed experiments, analyzed data, and co-wrote the paper. S. Samanifar supervised the research, designed and performed experiments, analyzed data, and co-wrote the paper. A. Ghasemi supervised the research, designed experiments, and co-wrote the paper. A. J. Rashidi supervised the research, designed experiments, and co-wrote the paper. E. Paimozd supervised the research, designed and performed experiments, and co-wrote the paper.

Corresponding author

Correspondence to S. Samanifar.

Ethics declarations

Consent for Publication

This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alirezaei, B., Samanifar, S., Ghasemi, A. et al. Magnetic Properties and Reversal Modes of Electrodeposited CoCr Nanowire Arrays with Different Diameters. J Supercond Nov Magn 34, 3199–3208 (2021). https://doi.org/10.1007/s10948-021-05982-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05982-z

Keywords

Navigation