Log in

Effect of Hydrostatic Pressure on Superconductivity of FeSe Thin Films

  • Original Research
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The electronic transport in superconducting epitaxial c-axis-oriented FeSe thin films grown on (001)-oriented MgO substrates was investigated. To this end, the in-plane resistivity was measured in dependence on temperature, pressure, and magnetic field. The temperature ranged from 1.2 to 35 K; static magnetic fields with strengths up to 14 T were applied normal to the film surface, i.e. parallel to the FeSe c-axis; and hydrostatic pressure was applied from 0 to 2.7 GPa. Concerning the role of the MgO substrate in the pressure experiments, it is suggested that the substrate mainly reduces the in-plane compressibility of the film in comparison to bulk. The transition to superconductivity shifted to higher temperatures with increasing pressure. The onset critical temperature raised from 11.5 K at zero applied pressure with an initial rate of 2.5 K/GPa to 18.2 K at 2.7 GPa. The pressure-induced increase of the critical temperature was accompanied by a twofold broadening of the transition width. As a counterpart of pressure, the magnetic field shifted the superconducting transition to lower temperature. In addition to pressure, the field also induced a noticeable broadening of the superconductive transition rather than a parallel shift. The positive magnetoresistance at 20 K increased with enhanced pressure and reached 24% at the highest pressure and field. For each applied pressure, the magnetoresistance could be fitted by a Lorentzian function, i.e. it originates from classical Lorentz scattering. The resulting charge carrier mobility increased under pressure suggesting a decreasing collision rate. The upper critical field raised with higher pressure. Its temperature dependence could be fitted by conventional Werthamer-Hohenberg-Helfand theory under the assumption of the Pauli paramagnetic effect that became more pronounced under pressure. The anomalous behaviour of the normalized negative slope of the upper critical field at the critical temperature suggested a change of the Fermi surface above a critical pressure of 2 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chu, C.W., Lorenz, B.: Physica C. 469, 385 (2009)

    ADS  Google Scholar 

  2. Sefat, A.S.: Rep. Prog. Phys. 74, 124502 (2011)

    ADS  Google Scholar 

  3. Okabe, H., Takeshita, N., Horigane, K., Muranaka, T., Akimitsu, J.: Phys. Rev. B. 81, 205119 (2010)

    ADS  Google Scholar 

  4. Margadonna, S., Takabayashi, Y., Ohishi, Y., Mizuguchi, Y., Takano, Y., Kagayama, T., Nakagawa, T., Takata, M., Prassides, K.: Phys. Rev. B. 80, 064506 (2009)

    ADS  Google Scholar 

  5. Naghavi, S.S., Chadov, S., Felser, C.: J. Phys. Condens. Matter. 23, 205601 (2011)

    ADS  Google Scholar 

  6. Kumar, R.S., Zhang, Y., Sinogeikin, S., **ao, Y., Kumar, S., Chow, P., Cornelius, A.L., Chen, C.: J. Phys. Chem. B. 114, 12597 (2010)

    Google Scholar 

  7. Medvedev, S., McQueen, T.M., Troyan, I.A., Palosyuk, T., Eremets, M.I., Cava, R.J., Naghavi, S., Casper, F., Ksenofontov, V., Wortmann, G., Felser, C.: Nat Mater. 8, 630 (2009)

    ADS  Google Scholar 

  8. Garbarino, G., Sow, A., Lejay, P., Sulpice, A., Toulemonde, P., Mezouar, M., Núñez-Regueiro, M.: Europhys. Lett. 86, 27001 (2009)

    ADS  Google Scholar 

  9. Braithwaite, D., Salce, B., Lapertot, G., Bourdarot, F., Marin, C., Aoki, D., Hanfland, M.: J. Phys. Condens. Matter. 21, 232202 (2009)

    ADS  Google Scholar 

  10. Sun, J.P., Matsuura, K., Ye, G.Z., Mizukami, Y., Shimozawa, M., Matsubayashi, K., Yamashita, M., Watashige, T., Kasahara, S., Matsuda, Y., Yan, J.-Q., Sales, B.C., Uwatoko, Y., Cheng, J.-G., Shibauchi, T.: Nat. Commun. 7, 12146 (2016)

    ADS  Google Scholar 

  11. Kang, J.-H., Jung, S.-G., Lee, S., Park, E., Lin, J.-Y., Chareev, D.A., Vasiliev, A.N., Park, T.: Supercond. Sci. Technol. 29, 035007 (2016)

    ADS  Google Scholar 

  12. Terashima, T., Kikugawa, N., Kiswandhi, A., Graf, D., Choi, E.-S., Brooks, J.S., Kasahara, S., Watashige, T., Matsuda, Y., Shibauchi, T., Wolf, T., Böhmer, A.E., Hardy, F., Meingast, C.: v. Löhneysen, H., Uji, S. Phys. Rev. B. 094505, 93 (2016)

    Google Scholar 

  13. Terashima, T., Kikugawa, N., Kasahara, S., Katashige, T., Matsuda, Y., Shibauchi, T., Uji, S.: Phys. Rev. B. 93, 180503(R) (2016)

    ADS  Google Scholar 

  14. Kaluarachchi, U.S., Taufour, V., Böhmer, A.E., Tanatar, M.A., Bud’ko, S.L., Kogan, V.G., Prozorov, R., Canfield, P.C.: Phys. Rev. B. 93, 064503 (2016)

    ADS  Google Scholar 

  15. Gooch, M., Lorenz, B., Huang, S.X., Chien, C.L., Chu, C.W.: J. Appl. Phys. 111, 112610 (2012)

    ADS  Google Scholar 

  16. Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T., Takano, Y.: Appl. Phys. Lett. 93, 152505 (2008)

    ADS  Google Scholar 

  17. Mizuguchi, Y., Hara, Y., Deguchi, K., Tsuda, S., Yamaguchi, T., Takeda, K., Kategawa, H., Tou, H., Takano, Y.: Supercond. Sci. Technol. 23, 054013 (2010)

    ADS  Google Scholar 

  18. Huang, S.X., Chien, C.L., Thampy, V., Broholm, C.: Phys. Rev. Lett. 104, 217002 (2010)

    ADS  Google Scholar 

  19. Bellingeri, E., Pallecchi, I., Buzio, R., Gerbi, A., Marrè, D., Cimberle, M.R., Tropeano, M., Putti, M., Palenzona, A., Ferdeghini, C.: Appl. Phys. Lett. 96, 102512 (2010)

    ADS  Google Scholar 

  20. Schneider, R., Zaitsev, A.G., Fuchs, D., Fromknecht, R.: Supercond. Sci. Technol. 26, 055014 (2013)

    ADS  Google Scholar 

  21. Schneider, R., Zaitsev, A.G., Fuchs, D., Hott, R.: Supercond. Sci. Technol. 32, 025001 (2019)

    ADS  Google Scholar 

  22. Schneider, R., Zaitsev, A.G., Fuchs, D., von Löhneysen, H.: J. Phys. Condens. Matter. 26, 455701 (2014)

    Google Scholar 

  23. Zaitsev, A.G., Schneider, R., Fuchs, D., Beck, A., Hott, R.: J. Phys. Conf. Ser. 507, 012054 (2014)

    Google Scholar 

  24. Murata, K., Yokogawa, K., Yoshino, H., Klotz, S., Munsch, P., Irizawa, A., Nishiyama, M., Iizuka, K., Nanba, T., Okada, T., Shiraga, Y., Aoyama, S.: Rev. Sci. Instrum. 79, 085101 (2008)

    ADS  Google Scholar 

  25. Eiling, A., Schilling, J.S.: J. Phys. F: Metal Phys. 11, 623 (1981)

    ADS  Google Scholar 

  26. Yokogawa, K., Murata, K., Yoshino, H., Aoyama, S.: Jpn. J. Appl. Phys. 46, 3636 (2007)

    ADS  Google Scholar 

  27. Van der Pauw, L.W.: Philips Tech Rev. 20, 220 (1958)

    Google Scholar 

  28. Knöner, S., Zielke, D., Köhler, S., Wolf, B., Wolf, T., Wang, L., Böhmer, A., Meingast, C., Lang, M.: Phys. Rev. B. 91, 174510 (2015)

    ADS  Google Scholar 

  29. Imai, T., Ahilan, K., Ning, F.L., McQueen, T.M., Cava, R.J.: Phys. Rev. Lett. 102, 177005 (2009)

    ADS  Google Scholar 

  30. Ghorbani, S.R., Wang, X.L., Shabazi, M., Dou, S.K., Choi, K.Y., Lin, C.T.: Appl. Phys. Lett. 100, 072603 (2012)

    ADS  Google Scholar 

  31. Huynh, K.K., Tanabe, Y., Urata, T., Oguro, H., Heguri, S., Watanabe, K., Tanigaki, K.: Phys. Rev. B. 90, 144516 (2014)

    ADS  Google Scholar 

  32. Watson, M.D., Yamashita, T., Kasahara, S., Knafo, W., Nardone, M., Béard, J., Hardy, F., McCollam, A., Narayanan, A., Blake, S.F., Wolf, T., Haghighirad, A.A., Meingast, C., Schofield, A.J., von Löhneysen, H., Matsuda, Y., Coldea, A.I., Shibauchi, T.: Phys. Rev. Lett. 115, 027006 (2015)

    ADS  Google Scholar 

  33. Pippard, A.B.: Magnetoresistance in metals. Cambridge University press (1989)

  34. Suski, T., Wiśniewski, P., Litwin-Staszewska, E., Kassut, J., Wilamowski, Z., Dietl, T., Światek, K., Ploog, K., Knecht, J.: Semicond. Sci. Technol. 5, 261 (1990)

    ADS  Google Scholar 

  35. Rang, Z., Nathan, M.I., Ruden, P.P., Podzorov, V., Gershenson, M.E., Newman, C.R., Frisbie, C.D.: Appl. Phys. Lett. 86, 123501 (2005)

    ADS  Google Scholar 

  36. Nguyen, T.P., Shim, J.H.: Phys. Chem. Chem. Phys. 18, 13888 (2016)

    Google Scholar 

  37. Nayak, A.P., Yuan, Z., Cao, B., Liu, J., Wu, J., Moran, S.T., Li, T., Akinwande, D., **, C., Lin, J.-F.: ACS Nano. 9, 9117 (2015)

    Google Scholar 

  38. Werthamer, N.R., Helfand, E., Hohenberg, P.C.: Phys. Rev. 147, 295 (1966)

    ADS  Google Scholar 

  39. Audouard, A., Duc, F., Drigo, L., Toulemonde, P., Karlsson, S., Strobel, P., Sulpice, A.: Europhys. Lett. 109, 27003 (2015)

    ADS  Google Scholar 

  40. Her, J.L., Kohama, Y., Matsuda, Y.H., Kindo, K., Yang, W.-H., Chareev, D.A., Mitrofanova, E.S., Volkova, O.S., Vasiliev, A.N., Lin, J.-Y.: Supercond. Sci. Technol. 28, 045013 (2015)

    ADS  Google Scholar 

  41. Gati, E., **ang, L., Wang, L.-L., Manni, S., Canfield, P.C., Bud’ko, S.L.: J. Phys. Condens. Matter. 31, 035701 (2019)

    ADS  Google Scholar 

  42. Kogan, V.G., Prozorov, R.: Rep. Prog. Phys. 75, 114502 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Schneider.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, R., Zaitsev, A.G., Beck, A. et al. Effect of Hydrostatic Pressure on Superconductivity of FeSe Thin Films. J Supercond Nov Magn 32, 3729–3737 (2019). https://doi.org/10.1007/s10948-019-05161-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-05161-1

Keywords

Navigation