Log in

Effect of Pressure on Elastic Constants, Generalized Stacking Fault Energy, and Dislocation Properties in Antiperovskite-Type Ni-Rich Nitrides ZnNNi3 and CdNNi3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The elastic properties and generalized stacking fault energy curves of antiperovskite-type Ni-rich nitrides MNNi3 (M = Zn, Cd) under different pressure have been obtained from the first-principles calculations. By using the variational method, the core width and Peierls stresses of \(\frac {1}{2}\langle 110\rangle \{110\}\) edge dislocation and screw dislocation in ZnNNi3 and CdNNi3 within the improved Peierls-Nabarro (P-N) model in which the lattice discrete effect is taken into account have been investigated. Whatever the material or the pressure range, the Peierls stress of edge dislocation is smaller than that of screw dislocation. This also demonstrates that the edge dislocation is considered to be the dominant factor in determining the plastic behavior of MNNi3 (M = Zn, Cd) in the pressure range of 0–30 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. He, T., Huang, Q., Ramirez, A.P., et al.: Nature 411, 54 (2001)

    Article  ADS  Google Scholar 

  2. Uehara, M., Yamazaki, T., Kôri, T., et al.: J. Phys. Soc. Jpn. 76, 034714 (2007)

    Article  ADS  Google Scholar 

  3. Tohei, T., Wada, H., Kanomata, T.: J. Appl. Phys. 94, 1800 (2003)

    Article  ADS  Google Scholar 

  4. Yu, M.H., Lewis, L.H., Moodenbaugh, A.R.: J. Appl. Phys. 93, 10128 (2003)

    Article  ADS  Google Scholar 

  5. Kamishima, K., Goto, T., Nakagawa, H., et al.: Phys. Rev. B 63, 024426 (2000)

    Article  ADS  Google Scholar 

  6. Li, Y.B., Li, W.F., Feng, W.J., et al.: Phys. Rev. B 72, 024411 (2005)

    Article  ADS  Google Scholar 

  7. Takenaka K., Takagi, H.: Appl. Phys. Lett. 87, 261902 (2005)

    Article  ADS  Google Scholar 

  8. Takenaka, K., Asano, K., Misawa, M., et al.: Appl. Phys. Lett. 92, 011927 (2008)

    Article  ADS  Google Scholar 

  9. Chi, E.O., Kim, W.S., Hun, N.H.: Solid State Commun. 120, 307 (2001)

    Article  ADS  Google Scholar 

  10. Lin, J.C., Wang, B.S., Tong, P., et al.: Scr. Mater 65, 452 (2011)

    Article  Google Scholar 

  11. Asano, K., Koyama, K., Takenaka, K.: Appl. Phys. Lett. 92, 161909 (2008)

    Article  ADS  Google Scholar 

  12. Hayward, M.A., Hass, M.K., Ramirez, A.P., et al.: Solid State Commun. 119, 491 (2001)

    Article  ADS  Google Scholar 

  13. Ren, Z.A., Che, G.C., Jia, S.L., et al.: Physica C 371, 1 (2002)

    Article  ADS  Google Scholar 

  14. Villaes, P.: L. D. Calvent Person’s handbook of crystallographic data for intermetallic phase. The materials information society, vol. 2, pp. 1942 (1996)

  15. Heid, R., Benker, B., Schober, H., et al.: Phys. Rev. B 69, 092511 (2004)

    Article  ADS  Google Scholar 

  16. Rosner, H., Weht, R., Johannes, M.D., et al.: Phys. Rev. Lett. 88, 027001 (2002)

    Article  ADS  Google Scholar 

  17. Dugdale, S.B., Jarlborg, T.: Phys. Rev. B 64, 100508 (2001). (R)

    Article  ADS  Google Scholar 

  18. Singh, D.J., Mazin, I.I.: Phys. Rev. B 64, 140507 (2001). (R)

    Article  ADS  Google Scholar 

  19. Szajek, A.: J. Phys. Condens. Matter 13(26), L595 (2001)

    Article  ADS  Google Scholar 

  20. Shim, J.H., Kwon, S.K., Min, I.: Phys. Rev. B 64, 180510 (2001). (R)

    Article  ADS  Google Scholar 

  21. Mo, J.Q., Rosario, M.M., Nelson, K.D., et al.: Phys. Rev. B 67, 094502 (2003)

    Article  ADS  Google Scholar 

  22. Shan, L., Tao, H.J., Gao, H., et al.: Phys. Rev. B 68, 144510 (2003)

    Article  ADS  Google Scholar 

  23. Li, S.Y., Mo, W.Q., Yu, M., et al.: Phys. Rev. B 65, 064534 (2002)

    Article  ADS  Google Scholar 

  24. Okye, C.M.I.: J. Phys: Condens Matter 15, 833 (2003)

    ADS  Google Scholar 

  25. Lin, J. -Y., Ho, P.L., Huang, H.L., et al.: Phys. Rev. B 67, 052501 (2003)

    Article  ADS  Google Scholar 

  26. Yang, H.D., Mollah, S., Huang, W.L., et al.: Phys. Rev. B 68, 092507 (2003)

    Article  ADS  Google Scholar 

  27. Garbarino, G., Montererde, M., Nunez-Regueiro, M., et al.: Physica C 408-410, 754 (2004)

    Article  ADS  Google Scholar 

  28. Geetha Kumary, T., Janaki, J., Mani, A, et al.: Phys. Rev. B 66, 064510 (2002)

    Article  ADS  Google Scholar 

  29. Li, J.Q., Wu, L.J., Li, L., Zhu, Y.: Phys. Rev. B 65, 052506 (2002)

    Article  ADS  Google Scholar 

  30. Park, M.S., Giim, J.S., Park, S.H., et al.: Supercond Sci. Technol. 17, 274 (2004)

    Article  ADS  Google Scholar 

  31. Uehara, M., Amano, T., Takano, S., et al.: Physica C 440, 6 (2006)

    Article  ADS  Google Scholar 

  32. Feng, H.F., Wu, X.Z., Gan, L.Y., et al.: J. Supercond Nov. Magn. 26, 3401 (2013)

    Article  Google Scholar 

  33. Shein, I.R., Shein, K.I., Ivanovskii, A.L.: Metallofizika Nov. Tekhnol. 26, 1193 (2004)

    Google Scholar 

  34. Uehara, M., Uehara, A., Kozawa, K., Kimishima, Y.: J. Phys. Soc. Jpn. 78, 033702 (2009)

    Article  ADS  Google Scholar 

  35. Karki, A.B., **ong, Y.M., Young, D.P., Adams, P.W.: Phys. Rev. B 79, 212508 (2009)

    Article  ADS  Google Scholar 

  36. Uehara, M., Uehara, A., Kozawa, K., Yamazaki, T., Kimishima, Y.: Physica C 470, S688 (2010)

    Article  ADS  Google Scholar 

  37. Li, C., Chen, W.G., Wang, F., Li, S.F., Sun, Q., Wang, S., Jia, Y.: J. Appl. Phys. 105, 123921 (2009)

    Article  ADS  Google Scholar 

  38. Shein, I.R., Bannikov, V.V., Ivanovskii, A.I.: Phys. Status Solidi B 247, 72 (2010)

    Article  ADS  Google Scholar 

  39. Okoye, C.M.I: Physica B 405, 1562 (2010)

    Article  ADS  Google Scholar 

  40. Hirth, J.P., Lothe, J.: Theory of dislocations. Wiley, New York (1982)

    Google Scholar 

  41. Schoeck, G.: Mater. Sci. Eng. A 400–401, 7 (2005)

    Article  Google Scholar 

  42. Duesbery, M.S., Richardsom, G.Y.: Cri. Rev. Solid State Mater. Sci. 17, 1 (1991)

    Article  Google Scholar 

  43. Vitek, V.: Prog. Mater. Sci. 36, 1 (1992)

    Article  Google Scholar 

  44. Zhang, H.L.: Phys. B 406, 1323 (2011)

    Article  ADS  Google Scholar 

  45. Zhang, H.L., Yuan, C.J.: Eur. Phys. J. B 85, 87 (2012)

    Article  ADS  Google Scholar 

  46. Peierls, R.E.: Proc. Phys. Soc. 52, 23 (1940)

    Article  Google Scholar 

  47. Nabarro, F.R.N.: Proc. Phys. Soc. 59, 256 (1947)

    Article  ADS  Google Scholar 

  48. Wang, S.F.: J. Phys. A: Math. Theor. 42, 025208 (2009)

    Article  ADS  Google Scholar 

  49. Mryasov, O.N., Gornostyrev, Y.N., Freeman, A.J.: Phys. Rev. B 58, 11927 (1998)

    Article  ADS  Google Scholar 

  50. Blöchl, P.E.: Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  51. Kresse, G., Joubert, D.: Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  52. Kresse, G., Hafner, J.: Phys. Rev. B 48, 3115 (1993)

    Article  Google Scholar 

  53. Kresse, G., Furthmller, J.: Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  54. Kresse, G., Furthmller, J.: Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  55. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  56. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 78, 1396 (1996)

    Article  ADS  Google Scholar 

  57. Monkhorst, H.J., Pack, J.D.: Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  58. Bannikov, V.V., Shein, I.R., Ivanovskii, A.L.: Physica B 405, 4615 (2010)

    Article  ADS  Google Scholar 

  59. Wang, J., Yip, S., Phillpot, S.R., Wolf, D.: Phys. Rev. Lett. 71, 4182 (1993)

    Article  ADS  Google Scholar 

  60. Deng, Y., Jia, O.H., Chen, X.R., et al.: Phys. B 392, 2007 (2007)

    Article  Google Scholar 

  61. Vitek, V.: Philos. Mag. 18, 773 (1968)

    Article  ADS  Google Scholar 

  62. Vitek, V.: Cryst. Lattice Defects 5, 1 (1974)

    Google Scholar 

  63. Wang, S.F.: J. Phys. A: Math. Theor. 42, 025208 (2009)

    Article  ADS  Google Scholar 

  64. Wu, X.Z., Wang, S.F.: Front. Mater. Sci. China 3(2), 205 (2009)

    Article  Google Scholar 

  65. Christian, J.W., Vitek, V.: Rep. Prog. Phys. 33, 307 (1970)

    Article  ADS  Google Scholar 

  66. Lejc̆ek, L., Czech, J.: Phys. B 26, 294 (1976)

    Google Scholar 

  67. Wu, X.Z., Wang, S.F., Liu, R.P.: Chin. Phys. B 18, 2905 (2009)

    Article  ADS  Google Scholar 

  68. **e, S., Russell, A.M., Becker, A.T., et al.: Scr. Mater 58, 1066 (2008)

    Article  Google Scholar 

  69. Schroll, R., Vitek, V., Gumbsch, P.: Acta Mater. 14, 903 (1998)

    Article  Google Scholar 

  70. Wang, S.F.: Chin. Phys. 15(6), 1301 (2007)

    ADS  Google Scholar 

Download references

Acknowledgments

The work is supported by the Natural Science Foundation of China (11104361), State Key Laboratory of Coal Mine Disaster Dynamics and Control in Chongqing University (2011DA105287FW201210), and the Fundamental Research Funds for the Central Universities (CDJZR14328801 & CQDXWL2014003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aozhi Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wu, X., Wang, R. et al. Effect of Pressure on Elastic Constants, Generalized Stacking Fault Energy, and Dislocation Properties in Antiperovskite-Type Ni-Rich Nitrides ZnNNi3 and CdNNi3 . J Supercond Nov Magn 27, 2607–2615 (2014). https://doi.org/10.1007/s10948-014-2628-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-014-2628-7

Keywords

Navigation