Log in

Q-Switched Thulium-Doped Fiber Laser with Molybdenum–Aluminum-Boride-Based Saturable Absorber

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We propose and demonstrate a new Q-switched thulium-doped fiber laser (TDFL) by utilizing a passive saturable absorber (SA) based on Molybdenum–Aluminium boride (MoAlB). The MoAlB is a metal–ceramic-based material; it is embedded in polyvinyl-alcohol (PVA) material to operate as the SA. The laser successfully generates stable Q-switched pulses operating at 1974.7 nm with a maximum repetition rate of 57.7 kHz and a minimum pulse width of 1.79 μs. A maximum pulse energy of 90.2 nJ is recorded at 436 mW pump power. Our experiment is the first demonstration on the use of MoAlB for the pulse laser generation in the 2 μm wavelength region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yao, S. Y. Chen, A. Pal, et al., Sens. Actuator A Phys., 226, 11 (2015).

    Article  Google Scholar 

  2. C.W. Rudy, M. J. F. Digonnet, and R. L. Byer, Opt. Fiber Technol., 20, 642 (2014).

    Article  ADS  Google Scholar 

  3. A. A. Shakaty, J. K. Hmood, B. R. Mahdi, et al., Opt. Laser Technol., 146, 107569 (2022).

    Article  Google Scholar 

  4. M. F. M. Rusdi, A. H. A. Rosol, M. F. A. Rahman, et al., Opt. Commun., 447, 6 (2019).

    Article  ADS  Google Scholar 

  5. A. A. Al-Azzawi, A. A. Almukhtar, B. A. Hamida, et al., Results Phys., 13, 102186 (2019).

    Article  Google Scholar 

  6. C. G. E. Alfieri, A. Diebold, F. Emaury, et al., Opt. Express, 24, 27587 (2016).

    Article  ADS  Google Scholar 

  7. A. S. Al-Hiti, A. H. H. Al-Masoodi, S. W. Harun, et al., Opt. Laser Technol., 131, 106429 (2020).

    Article  Google Scholar 

  8. A. S. Al-Hiti, R. Apsari, M. Yasin, and S. W. Harun, Infrared Phys. Technol., 116, 103788 (2021).

    Article  Google Scholar 

  9. X. Peng and Y. Yan, J. Eur. Opt. Soc. Rapid Publ., 17, 1 (2021).

    Article  MathSciNet  Google Scholar 

  10. J. Sotor, G. Sobon, K. Grodecki, and K. M. Abramski, Appl. Phys. Lett., 104, 251112 (2014).

    Article  ADS  Google Scholar 

  11. Q. Wei, X. Han, H. Zhang, et al., Appl. Opt., 59, 7792 (2020).

    Article  ADS  Google Scholar 

  12. Z. Dou, Y. Song, J. Tian, et al., Opt. Express, 22, 24055 (2014).

    Article  ADS  Google Scholar 

  13. Z. Luo, Y. Huang, J. Weng, et al., Opt. Express, 21, 29516 (2013).

    Article  ADS  Google Scholar 

  14. J. Sotor, G. Sobon, and K. M. Abramski, Opt. Express, 22, 13244 (2014).

    Article  ADS  Google Scholar 

  15. A. S. Al-Hiti, A. H. H. Al-Masoodi, W. R. Wong, et al., Opt. Laser Technol., 139, 106971 (2021).

    Article  Google Scholar 

  16. L. Li, Y. Su, Y. Wang, et al., IEEE J. Sel. Top. Quantum Electron., 23, 44 (2016).

    Article  ADS  Google Scholar 

  17. P. Wang, D. Hu, K. Zhao, et al., IEEE J. Sel. Top. Quantum Electron., 24, 1 (2017).

    Google Scholar 

  18. M. Liu, W. Liu, and Z. Wei, J. Lightw. Technol., 37, 3100 (2019).

    Article  ADS  Google Scholar 

  19. J. Yin, Y. Su, Y. Wang, et al., Opt. Express, 25, 30020 (2017).

    Article  ADS  Google Scholar 

  20. A. S. Al-Hiti, A. H. H. Al-Masoodi, W. R. Wong, and S. W. Harun, IET Optoelectron., 14, 278 (2020).

    Article  Google Scholar 

  21. K.-X. Huang, B. L. Lu, D. Li, et al., Appl. Opt., 56, 6427 (2017).

    Article  ADS  Google Scholar 

  22. A. S. Al-Hiti, M. F. A. Rahman, S. W. Harun, et al., Opt. Fiber Technol., 52, 101996 (2019).

    Article  Google Scholar 

  23. S. P. Munagala, “MAX phases: New class of carbides and nitrides for aerospace structural applications,” in: Aerospace Materials and Material Technologies, Springer (2017), pp. 455–465.

  24. G. Song, “Self-healing of MAX phase ceramics for high temperature applications: Evidence from Ti3AlC2,” in: Advances in Science and Technology of Mn+1 AXn Phases, Elsevier (2012), pp. 271–288.

  25. M. W. Barsoum, Progress in Solid State Chemistry, 28, 201 (2000).

    Article  Google Scholar 

  26. A. S. Al-Hiti, M. Yasin, and S. W. Harun, Opt. Fiber Technol., 68, 102763 (2022).

    Article  Google Scholar 

  27. M. Wang, S. Huang, Y.-J. Zeng, et al., Opt. Mater. Express, 9, 4429 (2019).

    Article  ADS  Google Scholar 

  28. H. Ahmad, A. S. Sharbirin, A. Muhamad, et al., J. Lightw. Technol., 35, 2470 (2017).

    Article  ADS  Google Scholar 

  29. H. Ahmad, A. Z. Zulkifli, K. Thambiratnam, and S. W. Harun, IEEE Photon. J., 5, 1501108 (2013).

  30. M. F. A. Rahman, A. A. Latiff, U. Z. M. Zaidi, et al., Opt. Commun., 421, 99 (2018).

    Article  ADS  Google Scholar 

  31. B. Ibarra-Escamilla,M. Durán-Sánchez, B. Posada-Ram´ırez, et al., IEEE Photon. Technol. Lett., 30, 1768 (2018).

  32. H. Ahmad, A. S. Sharbirin, and M. F. Ismail, Opt. Laser Technol., 120, 105757 (2019).

    Article  Google Scholar 

  33. H. Sakata, K. Kimpara, and N. Takahashi, Electron. Lett., 52, 63 (2016).

    Article  ADS  Google Scholar 

  34. A. R. Muhammad, R. Zakaria, M. T. Ahmad, et al., Opt. Fiber Technol., 50, 23 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulaiman Wadi Harun.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diblawe, A.M., Ahmad, B.A., Dimyati, K. et al. Q-Switched Thulium-Doped Fiber Laser with Molybdenum–Aluminum-Boride-Based Saturable Absorber. J Russ Laser Res 44, 172–178 (2023). https://doi.org/10.1007/s10946-023-10120-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-023-10120-2

Keywords

Navigation