Log in

Titanium Carbide MXene as a Mode Locker in Erbium-Doped Fiber Laser Cavity

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We propose a MXene Ti3C2Tx thin-film and demonstrate as saturable absorber (SA) to generate mode-locked laser pulses. In constructing the SA, titanium carbide (Ti3C2Tx) powder obtained through a selective etching process is dispersed in polyvinyl alcohol (PVA) solution before the mixture is dried to form a thin film. A small piece of the film is placed between two fiber ferrules to form a SA device and added to an erbium-doped fiber laser (EDFL) cavity with a length of 106 m to produce mode-locked pulses. The mode-locked laser operates at 1561.2 nm with a repetition rate of 1.89 MHz and pulse width of 154 ns as the pump power is fixed within a range from 40.2 to 87.2 mW. At 87.2 mW pump power, the maximum average output power, pulse energy, and peak power were measured to be 11.85 mW, 6.24 nJ, and 40.7 mW respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sugioka and Y. Cheng, Light Sci. Appl., 3, 149 (2014).

    Article  Google Scholar 

  2. J. Clowes, Optik & Photonik, 3, 36 (2008).

    Article  Google Scholar 

  3. L. Liren, Chinese J. Lasers, 34, 3 (2007).

    Google Scholar 

  4. A. S. Al-Hiti, A. H. H. Al-Masoodi, S. W. Harun, et al., Opt. Laser Technol., 131, 106429 (2020).

  5. O. Okhotnikov, A. Grudinin, and M. Pessa, New J. Phys., 6, 177 (2004).

    Article  ADS  Google Scholar 

  6. C. Aguergaray, N. G. Broderick, M. Erkintalo, et al., Opt. Express, 20, 10545 (2012).

    Article  ADS  Google Scholar 

  7. J. Gao, T. Ning, Y. Liu, et al., Appl. Opt., 58, 7897 (2019).

    Article  ADS  Google Scholar 

  8. E. Ismail, N. Kadir, A. Latiff, et al., RSC Adv., 6, 72692 (2016).

    Article  ADS  Google Scholar 

  9. H. Chen, J. Yin, J. Yang, et al., Opt. Lett., 42, 4279 (2017).

    Article  ADS  Google Scholar 

  10. H. Haris, S. W. Harun, P. Yupapin, et al., Nonlinear Opt. Quantum Opt., 52, 111 (2020).

  11. P. Yan, R. Lin, S. Ruan, et al., Sci. Rep., 5, 8690 (2015).

    Article  Google Scholar 

  12. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, IEEE J. Sel. Top. Quantum Electron., 10, 137 (2004).

  13. X.-X. Shang, L.-G. Guo, H.-N. Zhang, et al., Nanomaterials, 10, 1922 (2020).

    Article  Google Scholar 

  14. P. Li, Y. Chen, T. Yang, et al., ACS Appl. Mater. Interfaces, 9, 12759 (2017).

    Article  Google Scholar 

  15. B. Guo, S. H. Wang, Z. X. Wu, et al., Opt. Express, 26, 22750 (2018).

    Article  ADS  Google Scholar 

  16. Y. Song, Z. Liang, X. Jiang, et al., 2D Mater., 4, 045010 (2017).

  17. M. Naguib, M. Kurtoglu, V. Presser, et al., Adv. Mater., 23, 4248 (2011).

    Article  Google Scholar 

  18. A. L. Ivanovskii and A. N. Enyashin, Russ. Chem. Rev., 82, 735 (2013).

    Article  ADS  Google Scholar 

  19. A. N. Enyashin and A. L. Ivanovskii, J. Phys. Chem. C, 117, 13637 (2013).

    Article  Google Scholar 

  20. X. Jiang, S. Liu, W. Liang, et al., Laser Photonics Rev., 12, 1700229 (2018).

    Article  ADS  Google Scholar 

  21. Y. Dong, S. Chertopalov, K. Maleski, et al., Adv. Mater., 30, 1705714 (2018).

    Article  Google Scholar 

  22. Y. I. Jhon, J. Koo, B. Anasori, et al., Adv. Mater., 29, 1702496 (2017).

    Article  Google Scholar 

  23. A. A. A. Jafry, N. Kasim, B. Nizamani, et al., Optik, 224, 165682 (2020).

  24. V. Matsas, T. Newson, D. Richardson, and D. N. Payne, Electron. Lett., 28, 1391 (1992).

    Article  ADS  Google Scholar 

  25. M. Hofer, M. Ober, F. Haberl, and M. Fermann, IEEE J. Quantum Electron., 28, 720 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulaiman Wadi Harun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahib, M.A.A.B., Zulkipli, N.F., Rosol, A.H.A. et al. Titanium Carbide MXene as a Mode Locker in Erbium-Doped Fiber Laser Cavity. J Russ Laser Res 43, 328–333 (2022). https://doi.org/10.1007/s10946-022-10055-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-022-10055-0

Keywords

Navigation