Log in

A Compact Second-Harmonic Generator for Tasks of Precision Spectroscopy Within the Range of 240–600 nm

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We develop a universal design of a second-harmonic generator enabling a high-efficiency conversion of the CW laser radiation to a range of 240–600 nm. The distinctive features of the generator are its compact size and high stability achieved using an all-in-one (monolithic) hermetic body frame, which enables applications of this device in a broad range of precision spectroscopy and laser cooling. We design three systems for radiation conversion to ranges of 280, 410, and 560 nm and present their characteristics. The systems are used for laser cooling of magnesium ions (280 nm) and thulium atoms (410 nm). Due to the conversion efficiency and stability, the second-harmonic generators developed surpass most commercially available systems of Western manufacturers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Metcalf and P. van der Straten, Laser Cooling and Trap**, Springer, New York, Berlin, Heidelberg (1999).

  2. C. Wieman, G. Flowers, and S. Gilbert, Am. J. Phys., 63, 317 (1995).

    Article  ADS  Google Scholar 

  3. S. Snigirev, A. Golovizin, D. Tregubov, et al., Phys. Rev. A, 89, 012510 (2014).

    Article  ADS  Google Scholar 

  4. T. L. Nicholson, S. L. Campbell, R. B. Hutson, et al., Nature Commun., 6, 6896 (2015).

    Article  ADS  Google Scholar 

  5. X. Xu, T. H. Loftus, J. L. Hall, et al., J. Opt. Soc. Am. B, 20, 968 (2003).

    Article  ADS  Google Scholar 

  6. K. Yu. Khabarova, S. N. Slyusarev, S. A. Strelkin, et al., Quantum Electron., 42, 1021 (2012).

    Article  Google Scholar 

  7. E. S. Shuman, J. F. Barry, and D. DeMille, Nature, 467, 820 (2010).

    Article  ADS  Google Scholar 

  8. D. D. Sukachev, E. S. Kalganova, A. V. Sokolov, et al., Quantum Electron., 43, 374 (2013).

    Article  ADS  Google Scholar 

  9. http://www.toptica.com/products/research_grade_diode_lasers/frequency_converted_diode_lasers.html

  10. D. J. Larson, J. C. Bergquist, J. J. Bollinger, et al., Phys. Rev. Lett., 57, 70 (1986).

    Article  ADS  Google Scholar 

  11. R. E. Drullinger, D. J. Wineland, and J. C. Bergquist, Appl. Phys., 22, 365 (1980).

    Article  ADS  Google Scholar 

  12. C.W. Chou, D. B. Hume, and J. C. J. Koelemei, Phys. Rev. Lett., 104, 070802 (2010).

    Article  ADS  Google Scholar 

  13. R. C. Thompson, G. P. Barwood, and P. Gill, Optica Acta: Int. J. Opt., 33, 535 (1986).

    Article  ADS  Google Scholar 

  14. B. Hemmerling, F. Gebert, Y. Wan, et al., Appl. Phys. B, 104, 583 (2011).

    Article  ADS  Google Scholar 

  15. D. Sukachev, A. Sokolov, K. Chebakov, et al., Phys. Rev. A, 82, 011405(R) (2010).

  16. F. Riehle, Frequency Standards. Basics and Applications, Wiley (2004).

  17. G. D. Boyd and D. A. Kleinman, J. Appl. Phys., 39, 3597 (1968).

    Article  ADS  Google Scholar 

  18. T. W. Haensch and B. Couillaud, Opt. Commun., 35, 441, (1980).

    Article  ADS  Google Scholar 

  19. R. W. P. Drever, J. L. Hall, F. V. Kowalski, et al., Appl. Phys. B, 31, 97 (1983).

    Article  ADS  Google Scholar 

  20. Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, Opt. Lett., 17, 640 (1992).

    Article  ADS  Google Scholar 

  21. A. V. Smith, Crystal Nonlinear Optics: with SNLO Examples, AS-Photonics (2015).

  22. ISO Standard 11146, Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios (2005).

  23. S. G. Grechin, A. V. Zuev, A. E. Kokh, et al., Quantum Electron., 40, 509 (2010).

    Article  ADS  Google Scholar 

  24. C. G. Parthey, A. Matveev, J. Alnis, et al., Phys. Rev. Lett., 107, 20, 203001 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yu. Khabarova.

Additional information

Translated from manuscript submitted on June 27, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpakovsky, T.V., Zalivako, I.V., Semerikov, I.A. et al. A Compact Second-Harmonic Generator for Tasks of Precision Spectroscopy Within the Range of 240–600 nm. J Russ Laser Res 37, 440–447 (2016). https://doi.org/10.1007/s10946-016-9595-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-016-9595-3

Keywords

Navigation