Log in

Near-infrared light-mediated HMTNs@PMO-DOX/ICG@HA drug composite nanoparticles enable a synergistic combination of chemical and photothermal therapy for tumors

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Combination therapy for cancers can fully utilize each treatment method’s benefits in order to maximize anti-tumor actions and hence produce superior therapeutic outcomes. In this study, HMTNs@PMO@HA composite nanoparticles, a pH/NIR dual-responsive chemo-photothermal platform, were constructed. The hollow mesoporous titanium dioxide nanoparticles (HMTNs) were prepared by silica-protected calcination and alkali etching, and the periodic mesoporous organosilica (PMO) was coated on top of them to improve the biocompatibility, and then modified by hyaluronic acid (HA) to improve the targeting and cellular uptake of the nanoparticles. This chemo-photothermal platform combined the chemotherapeutic drug doxorubicin (DOX) with the photothermal agent indocyanine green (ICG) to investigate their inhibitory effects on breast cancer cells (MCF-7). Drug loading and release experiments revealed that the platform had a high loading rate of doxorubicin and indocyanine green (DOX: 40.21%; ICG: 25.78%), and the cumulative release rate of the drugs increased in an acidic environment. The results of the photothermal effect evaluation in vitro indicated that the nano-platform had a good photothermal effect. Cytotoxicity and apoptosis assays showed that the nanoparticles combined with NIR had a good inhibitory effect on breast cancer cells (cell viability: 27.68%; apoptosis rate: 43.4%). The above results indicated that the combination therapy used by this nano platform provided high therapeutic efficiency for treating tumors and offered a feasible strategy for combining tumor-targeting with chemo-photothermal therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Y.Y. Chen, G.S. Song, Z.L. Dong, X. Yi, Y. Chao, C. Liang, K. Yang, L. Cheng, Z. Liu, Small. 13, 1602869 (2017). https://doi.org/10.1002/smll.201602869

    Article  CAS  Google Scholar 

  2. C. Li, Y. Cheng, D. Li, Q. An, W. Zhang, Y. Zhang, Y. Fu, Int. J. Mol. Sci. 23, 7909 (2022). https://doi.org/10.3390/ijms23147909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Q. Liu, Y.H. Duo, J.Y. Fu, M. Qiu, Z. Sun, D. Adah, J.L. Kang, Z.J. **e, T.J. Fan, S.Y. Bao, H. Zhang, L.P. Liu, Y.H. Cao, Nano Today. 36, 101023 (2021). https://doi.org/10.1016/j.nantod.2020.101023

    Article  CAS  Google Scholar 

  4. W.W. Xu, C.H. Dong, H. Hu, X.Q. Qian, L. Chang, Q. Jiang, L.D. Yu, Y. Chen, J.Q. Zhou, Adv. Funct. Mater. 31, 2103134 (2021). https://doi.org/10.1002/adfm.202103134

    Article  CAS  Google Scholar 

  5. J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Nat. Rev. Cancer. 17, 20–37 (2017). https://doi.org/10.1038/nrc.2016.108

    Article  CAS  PubMed  Google Scholar 

  6. X. Li, J.F. Lovell, J. Yoon, X. Chen, Nat. Rev. Clin. Oncol. 17, 657–674 (2020). https://doi.org/10.1038/s41571-020-0410-2

    Article  PubMed  Google Scholar 

  7. L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Chem. Rev. 114, 10869–10939 (2014). https://doi.org/10.1021/cr400532z

    Article  CAS  PubMed  Google Scholar 

  8. X. Cui, Q. Ruan, X. Zhu, X. **a, J. Hu, R. Fu, Y. Li, J. Wang, H. Xu, Chem. Rev. 123, 6891–6952 (2023). https://doi.org/10.1021/acs.chemrev.3c00159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Q. Bao, Y. Zhang, X. Liu, T. Yang, H. Yue, M. Yang, C. Mao, Adv. Opt. Mater. 11, 2201482 (2023). https://doi.org/10.1002/adom.202201482

    Article  CAS  Google Scholar 

  10. X. Li, X.L. Zhao, D. Pardhi, Q.Q. Wu, Y. Zheng, H.H. Zhu, Z.W. Mao, Acta Biomater. 74, 374–384 (2018). https://doi.org/10.1016/j.actbio.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  11. Q. He, J. Shi, Adv. Mater. 26, 391–411 (2014). https://doi.org/10.1002/adma.201303123

    Article  CAS  PubMed  Google Scholar 

  12. X. Zheng, D. **ng, F. Zhou, B. Wu, W.R. Chen, Mol. Pharm. 8, 447–456 (2011). https://doi.org/10.1021/mp100301t

    Article  CAS  PubMed  Google Scholar 

  13. M.T. Noman, M.A. Ashraf, A. Ali, Environ. Sci. Pollut Res. 26, 3262–3291 (2019). https://doi.org/10.1007/s11356-018-3884-z

    Article  CAS  Google Scholar 

  14. M.A. Behnam, F. Emami, Z. Sobhani, A.R. Dehghanian, Iran. J. Basic. Med. Sci. 21, 1133–1139 (2018). https://doi.org/10.22038/ijbms.2018.30284.7304

    Article  PubMed  PubMed Central  Google Scholar 

  15. C. Nie, P. Du, H. Zhao, H. **e, Y. Li, L. Yao, Y. Shi, L. Hu, S. Si, M. Zhang, J. Gu, L. Luo, Z. Sun, Chem. -Asian J. 15, 148–155 (2020). https://doi.org/10.1002/asia.201901394

    Article  CAS  PubMed  Google Scholar 

  16. H. Liu, L. Ma, J. Zhao, J. Liu, J. Yan, J. Ruan, F. Hong, Biol. Trace Elem. Res. 129, 170–180 (2009). https://doi.org/10.1007/s12011-008-8285-6

    Article  CAS  PubMed  Google Scholar 

  17. Q.Q. Sun, D.N. Tan, Y.G. Ze, X.Z. Sang, X.R. Liu, S.X. Gui, Z. Cheng, J. Cheng, R.P. Hu, G.D. Gao, G. Liu, M. Zhu, X.Y. Zhao, L. Sheng, L. Wang, M. Tang, F.S. Hong, J. Hazard. Mater. 235, 47–53 (2012). https://doi.org/10.1016/j.jhazmat.2012.05.072

    Article  CAS  PubMed  Google Scholar 

  18. F. Afaq, P. Abidi, R. Matin, Q. Rahman, J. Appl. Toxicol. 18(1998090), 307–312 (1998)

    Article  CAS  PubMed  Google Scholar 

  19. E. Fabian, R. Landsiedel, L. Ma-Hock, K. Wiench, W. Wohlleben, B. van Ravenzwaay, Arch. Toxicol. 82, 151–157 (2008). https://doi.org/10.1007/s00204-007-0253-y

    Article  CAS  PubMed  Google Scholar 

  20. C. Kim, S. Yoon, J.H. Lee, Microporous Mesoporous Mat. 288, 109595 (2019). https://doi.org/10.1016/j.micromeso.2019.109595

    Article  CAS  Google Scholar 

  21. T. Shimogaki, H. Tokoro, M. Tabuchi, N. Koike, Y. Yamashina, M. Takahashi, J. Sol-Gel Sci. Technol. 74, 109–113 (2015). https://doi.org/10.1007/s10971-014-3583-2

    Article  CAS  Google Scholar 

  22. Z. Tao, M.P. Morrow, T. Asefa, K.K. Sharma, C. Duncan, A. Anan, H.S. Penefsky, J. Goodisman, A.-K. Souid, Nano Lett. 8, 1517–1526 (2008). https://doi.org/10.1021/nl080250u

    Article  CAS  PubMed  Google Scholar 

  23. W. Lin, Y.-W. Huang, X.-D. Zhou, Y. Ma, Toxicol. Appl. Pharmacol. 217, 252–259 (2006). https://doi.org/10.1016/j.taap.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  24. Y. Zhao, X. Sun, G. Zhang, B.G. Trewyn, I.I. Slowing, V.S.Y. Lin, ACS Nano. 5, 1366–1375 (2011). https://doi.org/10.1021/nn103077k

    Article  CAS  PubMed  Google Scholar 

  25. Y.-S. Lin, C.L. Haynes, J. Am. Chem. Soc. 132, 4834–4842 (2010). https://doi.org/10.1021/ja910846q

    Article  CAS  PubMed  Google Scholar 

  26. A. Yildirim, E. Ozgur, M. Bayindir, J. Mat. Chem. B 1, 1909–1920 (2013). https://doi.org/10.1039/c3tb20139b

    Article  CAS  Google Scholar 

  27. Y.Y. Cheng, X.Y. Jiao, W.P. Fan, Z. Yang, Y.Q. Wen, X.Y. Chen, Biomaterials. 256, 120191 (2020). https://doi.org/10.1016/j.biomaterials.2020.120191

    Article  CAS  PubMed  Google Scholar 

  28. K. Kim, H. Choi, E.S. Choi, M.H. Park, J.H. Ryu, Pharmaceutics 11, 301 (2019). https://doi.org/10.3390/pharmaceutics11070301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. Gary Bobo, D. Brevet, N. Benkirane Jessel, L. Raehm, P. Maillard, M. Garcia, J.O. Durand, Photodiagnosis Photodyn Ther. 9, 256–260 (2012). https://doi.org/10.1016/j.pdpdt.2011.12.010

    Article  CAS  PubMed  Google Scholar 

  30. Z. Cong, L. Zhang, S.-Q. Ma, K.S. Lam, F.-F. Yang, Y.-H. Liao, A.C.S. Nano 14, 1958–1970 (2020). https://doi.org/10.1021/acsnano.9b08434

    Article  CAS  Google Scholar 

  31. S. Wang, J. Zhang, W. Li, D. Chen, J. Tu, C. Sun, Y. Du, Carbohydr. Polym. 296, 119940 (2022). https://doi.org/10.1016/j.carbpol.2022.119940

    Article  CAS  PubMed  Google Scholar 

  32. J.B. Joo, Q. Zhang, I. Lee, M. Dahl, F. Zaera, Y. Yin, Adv. Funct. Mater. 22, 166–174 (2012). https://doi.org/10.1002/adfm.201101927

    Article  CAS  Google Scholar 

  33. K. Lan, Y. **a, R. Wang, Z. Zhao, W. Zhang, X. Zhang, A. Elzatahry, D. Zhao, Matter 1, 527–538 (2019). https://doi.org/10.1016/j.matt.2019.03.003

    Article  Google Scholar 

  34. X. Li, L. Zhou, Y. Wei, A.M. El-Toni, F. Zhang, D. Zhao, J. Am. Chem. Soc. 136, 15086–15092 (2014). https://doi.org/10.1021/ja508733r

    Article  CAS  PubMed  Google Scholar 

  35. Z.S. Eren, S. Tuncer, G. Gezer, L.T. Yildirim, S. Banerjee, A. Yilmaz, Microporous Mesoporous Mat. 235, 211–223 (2016). https://doi.org/10.1016/j.micromeso.2016.08.014

    Article  CAS  Google Scholar 

  36. H.Y. Wang, Y. Zhang, X.H. Ren, X.W. He, W.Y. Li, Y.K. Zhang, Nanoscale. 13, 886–900 (2021). https://doi.org/10.1039/d0nr07121h

    Article  CAS  PubMed  Google Scholar 

  37. F. Song, Y. Li, S. Wang, L. Zhang, Q. Chen, New. J. Chem. 43, 17284–17297 (2019). https://doi.org/10.1039/c9nj03001h

    Article  CAS  Google Scholar 

  38. G.V. Joshi, H.A. Patel, B.D. Kevadiya, H.C. Bajaj, Appl. Clay Sci. 45, 248–253 (2009). https://doi.org/10.1016/j.clay.2009.06.001

    Article  CAS  Google Scholar 

  39. D.Y. Arifin, L.Y. Lee, C.-H. Wang, Adv. Drug Deliv Rev. 58, 1274–1325 (2006). https://doi.org/10.1016/j.addr.2006.09.007

    Article  CAS  PubMed  Google Scholar 

  40. J. Goscianska, A. Ejsmont, A. Kubiak, D. Ludowicz, A. Stasilowicz, J. Cielecka-Piontek Mater. 14, 2188 (2021). https://doi.org/10.3390/ma14092188

    Article  CAS  Google Scholar 

  41. B. Gupta, B.K. Poudel, H.B. Ruttala, S. Regmi, S. Pathak, M. Gautam, S.G. **, J.-H. Jeong, H.-G. Choi, S.K. Ku, C.S. Yong, J.O. Kim, Acta Biomater. 80, 364–377 (2018). https://doi.org/10.1016/j.actbio.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  42. N. Wu, X. Zeng, B. Liu, F.X. Song, M.L. Chen, X.Q. Cai, H.H. Luo, Y. Li, J. Drug Deliv Sci. Technol. 80, 104102 (2023). https://doi.org/10.1016/j.jddst.2022.104102

    Article  CAS  Google Scholar 

  43. H.T.T. Tran, H. Kosslick, M.F. Ibad, C. Fischer, U. Bentrup, T.H. Vuong, L.Q. Nguyen, A. Schulz, Appl. Catal. B-Environ. 200, 647–658 (2017). https://doi.org/10.1016/j.apcatb.2016.07.017

    Article  CAS  Google Scholar 

  44. M. Kruk, M. Jaroniec, Chem. Mat. 13, 3169–3183 (2001). https://doi.org/10.1021/cm0101069

    Article  CAS  Google Scholar 

  45. T. Nash, A.C. Allison, J.S. Harington, Nature. 210, 259–261 (1966). https://doi.org/10.1038/210259a0

    Article  CAS  PubMed  Google Scholar 

  46. S.P. Stodghill, A.E. Smith, J.H. O’Haver, Langmuir. 20, 11387–11392 (2004). https://doi.org/10.1021/la047954d

    Article  CAS  PubMed  Google Scholar 

  47. I.I. Slowing, C.W. Wu, J.L. Vivero Escoto, V.S.Y. Lin, Small. 5, 57–62 (2009). https://doi.org/10.1002/smll.200800926

    Article  CAS  PubMed  Google Scholar 

  48. P.Y. Xu, R.K. Kankala, S.B. Wang, A.Z. Chen, Int. J. Pharm. 629, 122348 (2022). https://doi.org/10.1016/j.ijpharm.2022.122348

    Article  CAS  PubMed  Google Scholar 

  49. J.F.F. Barletta, J. Muir, J. Brown, A. Dzierba, Ann. Pharmacother. 58, 65–75 (2024). https://doi.org/10.1177/10600280231165787

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Guizhou Provincial Basic Research Program (Natural Science) (QKHJC-ZK[2023]ZD012).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by XQC and NW. FXS and HHL participated in the investigation and writing-reviewing. TXL, YBY and SYL were responsible for supervision. YL reviewed and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yan Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Wu, N., Song, F. et al. Near-infrared light-mediated HMTNs@PMO-DOX/ICG@HA drug composite nanoparticles enable a synergistic combination of chemical and photothermal therapy for tumors. J Porous Mater (2024). https://doi.org/10.1007/s10934-024-01588-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10934-024-01588-7

Keywords

Navigation