Log in

Red-fleshed pitaya peels (Hylocereus polyrhizus) as a biosorbent for removal of hormone 17α-methyltestosterone in aqueous medium

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Residual shells of the red-fleshed pitaya (Hylocereus polyrhizus) in natura (IN) and post-alkaline treatment (AT) were investigated for the efficiency of removal of the endocrine disrupting hormone 17α-methyltestosterone (MT) in aqueous solution. The characterizations of the biosorbents pointed to changes on the surface of the material after alkaline treatment, in which the formation of micropores was observed, in addition to alterations on the composition and thermal stability of the biomass. FTIR analysis of the biosorbents after adsorption revealed important role of hydroxyl and carboxylic groups in the hormone adsorption. The mass transfer process occurred quickly reaching equilibrium in up to 120 min, following a kinetics of pseudo-second order at temperatures of 25, 35 and 45 °C. It is suggested that the slow step of the adsorptive process correspond to the formation of intermolecular interactions of greater intensity, such as hydrogen bonds. Equilibrium studies revealed a better percentage of removal at low concentrations of the hormone and at room temperature. The optimum pH for MT removal increased from 3 to 7 after alkaline treatment, with qmax of 1.93 and 1.23 mg g−1 for the IN (at pH 3) and AT (at pH 7), respectively. The isothermal models suggested that the adsorption occurred in homogeneous sites with monolayer formation and enthalpically directed. These results, associated with the low concentrations in which the emerging contaminants are found, indicate that the biosorbent of pitaya may be a potentially advantageous and low-cost alternative for removal of the hormone from aqueous effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.Q. Zhang, S.S. Guo, Q. Sun, Research progress on lyophilization for pretreatment of emerging organic contaminants in environmental samples. Chin. J. Chromatogr. 39(8), 827–834 (2021). https://doi.org/10.3724/sp.j.1123.2021.02034

    Article  Google Scholar 

  2. N. Patel et al., Emerging pollutants in aquatic environment: source, effect, and challenges in biomonitoring and bioremediation- A review, (in en). Pollution 6(1), 99–113 (2020). https://doi.org/10.22059/poll.2019.285116.646

    Article  CAS  Google Scholar 

  3. J. Wilkinson, P.S. Hooda, J. Barker, S. Barton, J. Swinden, Occurrence, fate and transformation of emerging contaminants in water: an overarching review of the field. Environ. Pollut. 231, 954–970 (2017). https://doi.org/10.1016/j.envpol.2017.08.032

    Article  CAS  PubMed  Google Scholar 

  4. B.W. Green, D.R. Teichert-Coddington, Human food safety and environmental assessment of the use of 17α-methyltestosterone to produce male Tilapia in the United States. J. World Aquac. Soc. 31(3), 337–357 (2000). https://doi.org/10.1111/j.1749-7345.2000.tb00885.x

    Article  Google Scholar 

  5. S.P. Thanasupsin, L. Chheang, C. Math, Ecological risk of 17α-methyltestosterone contaminated water discharged from a full water recirculating earthen masculinization pond. Hum. Ecol. Risk Assess. Int. J. 27(6), 1696–1714 (2021). https://doi.org/10.1080/10807039.2021.1871845

    Article  CAS  Google Scholar 

  6. E. Bandelj, M.R. van den Heuvel, F.D.L. Leusch, N. Shannon, S. Taylor, L.H. McCarthy, Determination of the androgenic potency of whole effluents using mosquitofish and trout bioassays. Aquatic Toxicol. 80(3), 237–248 (2006). https://doi.org/10.1016/j.aquatox.2006.08.011

    Article  CAS  Google Scholar 

  7. R. Jenkins et al., Identification of androstenedione in a river containing paper mill effluent. Environ. Toxicol. Chem. 20(6), 1325–1331 (2001). https://doi.org/10.1002/etc.5620200622

    Article  CAS  PubMed  Google Scholar 

  8. S. Liu et al., Effects of 17α-Methyltestosterone on the transcriptome and sex hormones in the brain of Gobiocypris rarus. Int. J. Mol. Sci. 24(4), 3571 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. R. Guedes-Alonso, Z. Sosa-Ferrera, J.J. Santana-Rodríguez, Determination of steroid hormones in fish tissues by microwave-assisted extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry. Food Chem. 237, 1012–1020 (2017). https://doi.org/10.1016/j.foodchem.2017.06.065

    Article  CAS  PubMed  Google Scholar 

  10. S.K. Ong, P. Chotisukarn, T. Limpiyakorn, Sorption of 17α-methyltestosterone onto soils and sediment. Water Air Soil Pollut. 223(7), 3869–3875 (2012). https://doi.org/10.1007/s11270-012-1155-z

    Article  CAS  Google Scholar 

  11. J. Georgin, D.S.P. Franco, L. Meili, Y. Dehmani, G.S. dos Reis, E.C. Lima, Main advances and future prospects in the remediation of the antibiotic amoxicillin with a focus on adsorption technology: a critical review. J. Water Process Eng. 56, 104407 (2023). https://doi.org/10.1016/j.jwpe.2023.104407

    Article  Google Scholar 

  12. H. Kumar et al., Fruit and vegetable peels: utilization of high value horticultural waste in novel industrial applications. Molecules 25(12), 2812 (2020). https://doi.org/10.3390/molecules25122812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M.Z. Akbari, Y. Xu, Z. Lu, L. Peng, Review of antibiotics treatment by advance oxidation processes. Environ. Adv. 5, 100111 (2021)

    Article  CAS  Google Scholar 

  14. Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Recent advances for dyes removal using novel adsorbents: a review. Environ. Pollut. 252, 352–365 (2019). https://doi.org/10.1016/j.envpol.2019.05.072

    Article  CAS  PubMed  Google Scholar 

  15. W.-L. Chu, S.-M. Phang, Biosorption of heavy metals and dyes from industrial effluents by microalgae, in Microalgae biotechnology for development of biofuel and wastewater treatment. (Springer, Berlin, 2019), pp.599–634

    Chapter  Google Scholar 

  16. Y. Vieira et al., A critical review of the current environmental risks posed by the antidiabetic Metformin and the status, advances, and trends in adsorption technologies for its remediation. J. Water Process Eng. 54, 103943 (2023). https://doi.org/10.1016/j.jwpe.2023.103943

    Article  Google Scholar 

  17. V. Thakur, E. Sharma, A. Guleria, S. Sangar, K. Singh, Modification and management of lignocellulosic waste as an ecofriendly biosorbent for the application of heavy metal ions sorption. Mater. Today: Proc. 32, 608–619 (2020). https://doi.org/10.1016/j.matpr.2020.02.756

    Article  CAS  Google Scholar 

  18. J. Lu, C. Zhang, J. Wu, Removal of steroid hormones from mariculture system using seaweed Caulerpa lentillifera. Front. Environ. Sci. Eng. 16(2), 15 (2021). https://doi.org/10.1007/s11783-021-1449-8

    Article  CAS  Google Scholar 

  19. S.G. Cordeiro et al., Adsorption of emerging pollutant by pecan shell-based biosorbent. Appl. Sci. 12(18), 9211 (2022). https://doi.org/10.3390/app12189211

    Article  CAS  Google Scholar 

  20. P.-A. Deyris, F. Pelissier, C.M. Grison, P. Hesemann, E. Petit, C. Grison, Efficient removal of persistent and emerging organic pollutants by biosorption using abundant biomass wastes. Chemosphere 313, 137307 (2023). https://doi.org/10.1016/j.chemosphere.2022.137307

    Article  CAS  PubMed  Google Scholar 

  21. O.S. Bello, O.C. Alao, T.C. Alagbada, A.M. Olatunde, Biosorption of ibuprofen using functionalized bean husks. Sustain. Chem. Pharm. 13, 100151 (2019). https://doi.org/10.1016/j.scp.2019.100151

    Article  Google Scholar 

  22. R.A.L. Vieira, T.B. Pickler, T.C.M. Segato, A.F. Jozala, D. Grotto, Biochar from fungiculture waste for adsorption of endocrine disruptors in water. Sci. Rep. 12(1), 6507 (2022). https://doi.org/10.1038/s41598-022-10165-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. V. Dhyania, J. Kumar, T. Bhaskar, A comparative study of thermal decomposition kinetics of cellulose, hemicellulose, and lignin. Cellulose 95(5), 1 (2020)

    Google Scholar 

  24. M.A. Ahmad, M.A. Eusoff, K.A. Adegoke, O.S. Bello, Sequestration of methylene blue dye from aqueous solution using microwave assisted dragon fruit peel as adsorbent. Environ. Technol. Innov. 24, 101917 (2021). https://doi.org/10.1016/j.eti.2021.101917

    Article  CAS  Google Scholar 

  25. A.H. Jawad, A.M. Kadhum, Y.S. Ngoh, Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: kinetics, equilibrium and thermodynamics studies. Desalin. Water Treat. 109, 231–240 (2018). https://doi.org/10.5004/dwt.2018.21976

    Article  CAS  Google Scholar 

  26. N. Priyantha, L.B.L. Lim, M.K. Dahri, Dragon fruit skin as a potential biosorbent for the removal of methylene blue dye from aqueous solution. Int. Food Res. J. 22(5), 2141–2148 (2015)

    CAS  Google Scholar 

  27. L.B.L. Lim, N. Priyantha, S.A.A. Latip, Y.C. Lu, A.H. Mahadi, Converting Hylocereus undatus (white dragon fruit) peel waste into a useful potential adsorbent for the removal of toxic Congo red dye. Desalin. Water Treat. 185, 307–317 (2020). https://doi.org/10.5004/dwt.2020.25390

    Article  CAS  Google Scholar 

  28. M. Venkata Subbaiah et al., Carboxylate-functionalized dragon fruit peel powder as an effective adsorbent for the removal of Rhodamine B (cationic dye) from aqueous solution: adsorption behavior and mechanism. Int. J. Phytoremed. (2022). https://doi.org/10.1080/15226514.2022.2064817

    Article  Google Scholar 

  29. R. Mallampati, L. Xuanjun, A. Adin, S. Valiyaveettil, Fruit peels as efficient renewable adsorbents for removal of dissolved heavy metals and dyes from water. ACS Sustain. Chem. Eng. 3(6), 1117–1124 (2015). https://doi.org/10.1021/acssuschemeng.5b00207

    Article  CAS  Google Scholar 

  30. A. Saravanan, P.S. Kumar, S. Varjani, S. Karishma, S. Jeevanantham, P.R. Yaashikaa, Effective removal of Cr(VI) ions from synthetic solution using mixed biomasses: Kinetic, equilibrium and thermodynamic study. J. Water Process Eng. 40, 101905 (2021). https://doi.org/10.1016/j.jwpe.2020.101905

    Article  Google Scholar 

  31. A. Saravanan et al., Ultrasonic assisted agro waste biomass for rapid removal of Cd(II) ions from aquatic environment: mechanism and modelling analysis. Chemosphere 271, 129484 (2021). https://doi.org/10.1016/j.chemosphere.2020.129484

    Article  CAS  PubMed  Google Scholar 

  32. X. Hu et al., Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Sci. Total. Environ. 707, 135544 (2020). https://doi.org/10.1016/j.scitotenv.2019.135544

    Article  CAS  PubMed  Google Scholar 

  33. D.S.P. Franco et al., Application of biowaste generated by the production chain of pitaya fruit (Hylocereus undatus) as an efficient adsorbent for removal of naproxen in water. Environ. Sci. Pollut. Res. 29(26), 39754–39767 (2022)

    Article  CAS  Google Scholar 

  34. C. N. d. I. e. B. PubChem [Internet]. Bethesda (MD): Biblioteca Nacional de Medicina (EUA). "Resumo do composto PucChem para CID 6010, metiltestosterona." https://pubchem.ncbi.nlm.nih.gov/compound/Methyltestosterone (Accessed 19/11/2023, 2023).

  35. T.P. Barry, P. Marwah, A. Marwah, Transformation of 17a-methyltestosterone in aquatic-sediment systems. J. Appl. Nat. Sci. 3(1), 1–9 (2011)

    CAS  Google Scholar 

  36. P. Srikwan, B. Niamhom, T. Yagi, P. Thayanukul, Characterization of methyltestosterone degrading bacteria isolated from tilapia masculinizing ponds: metabolic intermediate, glucose amendments effects, and other hormones transformation. Water Air Soil Pollut. 231(10), 498 (2020). https://doi.org/10.1007/s11270-020-04859-6

    Article  CAS  Google Scholar 

  37. J.L. Schardein, O.T. Macina, Human developmental toxicants: aspects of toxicology and chemistry (CRC Press, Boca Raton, 2006)

    Book  Google Scholar 

  38. F. Adnan and S. Pliankarom, Removal of 17α-methyltestosterone from aqueous solution through active plant based reactor. 2016.

  39. L. Carvalho, P. Chagas, L. Pinto, Caesalpinia ferrea fruits as a biosorbent for the removal of methylene blue dye from an aqueous medium. Water Air Soil Pollut. (2018). https://doi.org/10.1007/s11270-018-3952-5

    Article  Google Scholar 

  40. Q. Zhang, K.T. Chuang, Adsorption of organic pollutants from effluents of a Kraft pulp mill on activated carbon and polymer resin. Adv. Environ. Res. 5(3), 251–258 (2001). https://doi.org/10.1016/S1093-0191(00)00059-9

    Article  CAS  Google Scholar 

  41. R.J. Ellis et al., In vivo and in vitro assessment of the androgenic potential of a pulp and paper mill effluent. Environ. Toxicol. Chem.: Int. J. 22(7), 1448–1456 (2003)

    Article  CAS  Google Scholar 

  42. S.K. Lagergren, About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl 24, 1–39 (1898)

    Google Scholar 

  43. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  44. W.J. Weber Jr., J.C. Morris, Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89(2), 31–59 (1963)

    Article  Google Scholar 

  45. I. Langmuir, THE constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38(11), 2221–2295 (1916). https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  46. H. Freundlich, Adsorption in solution. Phys. Chem. 57, 384–410 (1906)

    Google Scholar 

  47. M.M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60(2), 235–241 (1960). https://doi.org/10.1021/cr60204a006

    Article  CAS  Google Scholar 

  48. R. Sips, On the structure of a catalyst surface. J. Chem. Phys. 16(5), 490–495 (1948)

    Article  CAS  Google Scholar 

  49. O. Redlich, D.L. Peterson, A useful adsorption isotherm. J. Phys. Chem. 63(6), 1024–1024 (1959)

    Article  CAS  Google Scholar 

  50. A. Khadir, M. Negarestani, H. Ghiasinejad, Low-cost sisal fibers/polypyrrole/polyaniline biosorbent for sequestration of reactive orange 5 from aqueous solutions. J. Environ. Chem. Eng.neering 8(4), 103956 (2020). https://doi.org/10.1016/j.jece.2020.103956

    Article  CAS  Google Scholar 

  51. X. Guo, J. Wang, Comparison of linearization methods for modeling the Langmuir adsorption isotherm. J. Mole. Liq. 296, 111850 (2019). https://doi.org/10.1016/j.molliq.2019.111850

    Article  CAS  Google Scholar 

  52. G.M.D. Ferreira et al., Adsorption of red azo dyes on multi-walled carbon nanotubes and activated carbon: a thermodynamic study. Colloids Surf. A 529, 531–540 (2017)

    Article  CAS  Google Scholar 

  53. F. Mashkoor, A. Nasar, Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution. J. Mole. Liq. 274, 315–327 (2019). https://doi.org/10.1016/j.molliq.2018.10.119

    Article  CAS  Google Scholar 

  54. M.T. Uddin, M.A. Rahman, M. Rukanuzzaman, M.A. Islam, A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions. Appl Water Sci 7(6), 2831–2842 (2017). https://doi.org/10.1007/s13201-017-0542-4

    Article  CAS  Google Scholar 

  55. R. Md Salim, J. Asik, M.S. Sarjadi, Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci. Technol. 55(2), 295–313 (2021). https://doi.org/10.1007/s00226-020-01258-2

    Article  CAS  Google Scholar 

  56. A. Boukir, S. Fellak, P. Doumenq, Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). Heliyon 5(9), e02477 (2019). https://doi.org/10.1016/j.heliyon.2019.e02477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. S.S. Mohtar et al., Extraction and characterization of lignin from oil palm biomass via ionic liquid dissolution and non-toxic aluminium potassium sulfate dodecahydrate precipitation processes. Biores. Technol. 192, 212–218 (2015). https://doi.org/10.1016/j.biortech.2015.05.029

    Article  CAS  Google Scholar 

  58. H.G.D.S. Severino, C.B.D. Pinto, A.L.D. Spigolon, C.S.B.D. Mello, T.F.D. Silva, K.Z. Leal, Evaluation of the chemical composition and structure of asphaltenes from three offshore Brazilian biodegraded heavy oils. Quim. Nova 44, 391–401 (2021). https://doi.org/10.21577/0100-4042.20170697

    Article  CAS  Google Scholar 

  59. D. Díez, A. Urueña, R. Piñero, A. Barrio, T. Tamminen, Determination of hemicellulose, cellulose, and lignin content in different types of biomasses by thermogravimetric analysis and pseudocomponent Kinetic model (TGA-PKM Method). Processes (2020). https://doi.org/10.3390/pr8091048

    Article  Google Scholar 

  60. M.M. Jaffar, M.A. Nahil, P.T. Williams, Pyrolysis-catalytic hydrogenation of cellulose-hemicellulose-lignin and biomass agricultural wastes for synthetic natural gas production. J. Anal. Appl. Pyrolysis 145, 104753 (2020). https://doi.org/10.1016/j.jaap.2019.104753

    Article  CAS  Google Scholar 

  61. A.D.F.A. Venceslau, A.C. Mendonça, L.B. Carvalho, G.M.D. Ferreira, S.S. Thomasi, L.M.A. Pinto, Removal of methylene blue from an aqueous medium using atemoya peel as a low-cost adsorbent. Water Air Soil Pollut. 232(11), 1–18 (2021). https://doi.org/10.1007/s11270-021-05414-

    Article  Google Scholar 

  62. R. Singh, R. Bhateria, Experimental and modeling process optimization of lead adsorption on magnetite nanoparticles via isothermal, kinetics, and thermodynamic studies. ACS Omega 5(19), 10826–10837 (2020). https://doi.org/10.1021/acsomega.0c00450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. L.B. Carvalho et al., Removal of the synthetic hormone methyltestosterone from aqueous solution using a β-cyclodextrin/silica composite. J. Environ. Chem. Eng. 7(6), 103492 (2019). https://doi.org/10.1016/j.jece.2019.103492

    Article  CAS  Google Scholar 

  64. D.C. Henrique et al., Mollusk shells as adsorbent for removal of endocrine disruptor in different water matrix. J. Environ. Chem. Eng. 9(4), 105704 (2021). https://doi.org/10.1016/j.jece.2021.105704

    Article  CAS  Google Scholar 

  65. F. Adnan, S.P. Thanasupsin, Kinetic studies using a linear regression analysis for a sorption phenomenon of 17a-methyltestosterone by Salvinia cucullata in an active plant reactor. Environ. Eng. Res. 21(4), 384–392 (2016). https://doi.org/10.4491/eer.2016.019

    Article  Google Scholar 

  66. K.B. Debs, H.D.T. da Silva, M. de Lourdes Leite Moraes, E.N.V.M. Carrilho, S.G. Lemos, G. Labuto, Biosorption of 17α-ethinylestradiol by yeast biomass from ethanol industry in the presence of estrone. Environ. Sci. Pollut. Res. 26(28), 28419–28428 (2019). https://doi.org/10.1007/s11356-019-05202-1

    Article  CAS  Google Scholar 

  67. J. Ferandin Honorio, M.T. Veit, P.Y.R. Suzaki, P.F. Coldebella, E. Sloboda Rigobello, C.R.G. Tavares, Adsorption of naturals hormones estrone, 17β-estradiol, and estriol by rice husk: monocomponent and multicomponent kinetics and equilibrium. Environ. Technol. 41(9), 1075–1092 (2020). https://doi.org/10.1080/09593330.2018.1521472

    Article  CAS  PubMed  Google Scholar 

  68. V. Priyan, S. Narayanasamy, Effective removal of pharmaceutical contaminants ibuprofen and sulfamethoxazole from water by Corn starch nanoparticles: an ecotoxicological assessment. Environ. Toxicol. Pharmacol. 94, 103930 (2022). https://doi.org/10.1016/j.etap.2022.103930

    Article  CAS  Google Scholar 

  69. J. Wang, X. Guo, Adsorption kinetic models: physical meanings, applications, and solving methods. J. Hazard. Mater. 390, 122156 (2020). https://doi.org/10.1016/j.jhazmat.2020.122156

    Article  CAS  PubMed  Google Scholar 

  70. F. Raganati, M. Alfe, V. Gargiulo, R. Chirone, P. Ammendola, Kinetic study and breakthrough analysis of the hybrid physical/chemical CO2 adsorption/desorption behavior of a magnetite-based sorbent. Chem. Eng. J. 372, 526–535 (2019). https://doi.org/10.1016/j.cej.2019.04.165

    Article  CAS  Google Scholar 

  71. C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. (Resumed) (1960). https://doi.org/10.1039/JR9600003973

    Article  Google Scholar 

  72. M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: a review. J. Hazardous Mater. 393, 122383 (2020). https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  CAS  Google Scholar 

  73. J. Wang, X. Guo, Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 258, 127279 (2020). https://doi.org/10.1016/j.chemosphere.2020.127279

    Article  CAS  PubMed  Google Scholar 

  74. E. Sanz-Santos, S. Álvarez-Torrellas, L. Ceballos, M. Larriba, V.I. Águeda, J. García, Application of sludge-based activated carbons for the effective adsorption of neonicotinoid pesticides. Appl. Sci. 11(7), 3087 (2021). https://doi.org/10.3390/app11073087

    Article  CAS  Google Scholar 

  75. Z. Zaheer, A.L.A. Aisha, E.S. Aazam, Adsorption of methyl red on biogenic Ag@ Fe nanocomposite adsorbent: isotherms, kinetics and mechanisms. J. Mol. Liq. 283, 287–298 (2019). https://doi.org/10.1016/j.molliq.2019.03.030

    Article  CAS  Google Scholar 

  76. A.D. N’diaye, M.S.A. Kankou, Modeling of adsorption isotherms of pharmaceutical products onto various adsorbents: a short review. J. Mater. Environ. Sci 11(8), 1264–1276 (2020)

    Google Scholar 

  77. J.S. Piccin, T.R.S.A. Cadaval, L.A.A. de Pinto, G.L. Dotto, Adsorption isotherms in liquid phase: experimental, modeling, and interpretations, in Adsorption processes for water treatment and purification. ed. by A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila (Springer International Publishing, Cham, 2017), pp.19–51

    Chapter  Google Scholar 

  78. M. Chabani, A. Amrane, A. Bensmaili, Kinetic modelling of the adsorption of nitrates by ion exchange resin. Chem. Eng. J. 125(2), 111–117 (2006). https://doi.org/10.1016/j.cej.2006.08.014

    Article  CAS  Google Scholar 

  79. J.F. Honorio et al., Single and multi-component removal of natural hormones from aqueous solutions using soybean hull. J. Environ. Chem. Eng. 10(3), 107995 (2022). https://doi.org/10.1016/j.jece.2022.107995

    Article  CAS  Google Scholar 

  80. L.B. Carvalho, R.D.V. Baracho, J.M. Andrade, Z.M. Magriotis, L.M.A. Pinto, Adsorption studies of the hybrid material obtained from the functionalization of silica with Alfa and Gamma cyclodextrins. J. Environ. Sci. Health Part A 57(10), 841–851 (2022). https://doi.org/10.1080/10934529.2022.21190406

    Article  CAS  Google Scholar 

  81. P. Atkins, L. Jones, and L. Laverman, Princípios de Química-: Questionando a Vida Moderna e o Meio Ambiente. Bookman Editora, 2018.

  82. L.B.D. Carvalho, T.G. Carvalho, Z.M. Magriotis, T.D.C. Ramalho, L.D.M.A. Pinto, Cyclodextrin/silica hybrid adsorbent for removal of methylene blue in aqueous media. J. Inclusion Phenomena Macrocyclic Chem. 78, 77–87 (2014). https://doi.org/10.1007/s10847-012-0272-z

    Article  CAS  Google Scholar 

  83. D. Harikishore Kumar Reddy, K. Vijayaraghavan, J.A. Kim, Y.S. Yun, Valorisation of post-sorption materials: opportunities, strategies, and challenges. Adv. Coll. Interface. Sci. 242, 35–58 (2017). https://doi.org/10.1016/j.cis.2016.12.002

    Article  CAS  Google Scholar 

  84. R. Fatima, S. Yousuf, M.I. Choudhary, Cocrystallization of methyltestosterone with salicylic acid and 2,2′-disulfanediyldibenzoic acid - Effect on solubility of methyltestosterone and growth of leishmania parasite (amastigotes and promastigotes). J. Mole. Struct. 1295, 136741 (2024). https://doi.org/10.1016/j.molstruc.2023.136741

    Article  CAS  Google Scholar 

  85. J.-L. Lv, S.-R. Zhai, Y. Fan, Z.-M. Lei, Q.-D. An, Preparation of β-CD and Fe3O4 integrated multifunctional bioadsorbent for highly efficient dye removal from water. J. Taiwan Institute Chem. Eng. 62, 209–218 (2016). https://doi.org/10.1016/j.jtice.2016.02.006

    Article  CAS  Google Scholar 

  86. M.K. Shahid, A. Kashif, A. Fuwad, Y. Choi, Current advances in treatment technologies for removal of emerging contaminants from water – A critical review. Coord. Chem. Rev. 442, 213993 (2021). https://doi.org/10.1016/j.ccr.2021.213993

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Laboratory of Electron Microscopy and Ultrastructural Analysis of the Federal University of Lavras, Finep, Fapemig, CNPq and Capes for providing equipment and technical support for experiments involving electron microscopy. Authors also thank the Center for Analysis and Prospection Chemistry (CAPQ/UFLA) and FINEP, FAPEMIG, CNPq, and CAPES for provision of the equipment and technical support for experiments involving FTIR and TGA.

Funding

This study was funded by the Coordination for the Improvement of Higher Education Personnel (CAPES)—Financial Code 001—responsible for facilitating the study through the award of a master’s scholarship to Andressa Campos Mendonça. Additional support was provided by CNPq (scholarship granted to GMD Ferreira—grant 309999/2022-7). The funders had no involvement in the study’s design, data collection and analysis, decision to publish, or manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ACM and GMDF. The first draft of the manuscript was written by ACM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luciana Matos Alves Pinto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 510 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendonça, A.C., Venceslau, A.d.A., Ferreira, G.D. et al. Red-fleshed pitaya peels (Hylocereus polyrhizus) as a biosorbent for removal of hormone 17α-methyltestosterone in aqueous medium. J Porous Mater 31, 809–830 (2024). https://doi.org/10.1007/s10934-023-01543-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01543-y

Keywords

Navigation