Log in

Preparation and characterization of mussel-inspired dual-crosslinked hydrogels based on hydroxypropyl chitosan

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Marine mussels can adhere to various surfaces in a liquid environment by utilizing pedicle filaments, with the adhesive properties primarily attributed to the structure of catechol, the main component of the filament. To overcome the challenges associated with the complex preparation process, high cost, and potential biological rejection of naturally extracted or recombinantly expressed mussel proteins, researchers drew inspiration from mussels and utilized an oxidative crosslinking approach to prepare adhesive hydrogel materials. However, the hydrogels prepared using this method exhibited inferior mechanical properties and low viscosity. To address these limitations, in this study, a kind of mussel-inspired dual-crosslinked hydrogel was prepared by dual cross-linking with hydroxypropyl chitosan (HPCS) and hyaluronic acid (HA), based on catechol, an adhesion component in marine mussel pedicle filaments. Comparative analysis revealed that the mussel-inspired dual-crosslinked hydrogel exhibited significantly higher adhesion strength (up to 33.96 kPa) and improved mechanical properties (energy storage modulus ranging from 489 to 1032 Pa) compared to the mussel-inspired oxidatively cross-linked hydrogel. In addition, the mussel-inspired dual-crosslinked hydrogel demonstrated favorable swelling (up to 136.54 ± 0.22%), degradation, sustained-release, bacteriostatic and biocompatible properties. These findings suggest a promising potential for future applications in the field of biomedical materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Su, X. Bai, X. He, Research progress on hydrogel materials and their antifouling properties. Eur. Polymer J. 181, 111665 (2022). http://doi.org/https://doi.org/https://doi.org/10.1016/j.eurpolymj.2022.111665

    Article  CAS  Google Scholar 

  2. J. Xu, Y. Liu, Hsu. Hydrogels based on Schiff Base linkages for Biomedical Applications. Molecules. 24 (2019). https://doi.org/10.3390/molecules24163005

  3. Y. **ong, X. Zhang, X. Ma, W. Wang, F. Yan, X. Zhao, X. Chu, W. Xu, Sun. A review of the properties and applications of bioadhesive hydrogels. Polym. Chem. 12, 3721–3739 (2021). https://doi.org/10.1039/d1py00282a

    Article  CAS  Google Scholar 

  4. C. Ghobril, M.W. Grinstaff, The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem. Soc. Rev. 44, 1820–1835 (2015). https://doi.org/10.1039/c4cs00332b

    Article  CAS  PubMed  Google Scholar 

  5. S.W. Choi, W. Guan, K. Chung, Basic principles of hydrogel-based tissue transformation technologies and their applications. Cell. 184, 4115–4136 (2021). http://doi.org/https://doi.org/https://doi.org/10.1016/j.cell.2021.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Z. Tong, L. **, J.M. Oliveira, R.L. Reis, Q. Zhong, Z. Mao, C. Gao, Adaptable hydrogel with reversible linkages for regenerative medicine: dynamic mechanical microenvironment for cells. Bioactive Mater. 6, 1375–1387 (2021). https://doi.org/10.1016/j.bioactmat.2020.10.029

    Article  CAS  Google Scholar 

  7. R.C. Cooper, H. Yang, Hydrogel-based ocular drug delivery systems: emerging fabrication strategies, applications, and bench-to-bedside manufacturing considerations. J. Controlled Release. 306, 29–39 (2019). https://doi.org/10.1016/j.jconrel.2019.05.034

    Article  CAS  Google Scholar 

  8. S. Khajouei, H. Ravan, A. Ebrahimi, DNA hydrogel-empowered biosensing. Adv. Colloid Interface Sci. 275, 102060 (2020). http://doi.org/https://doi.org/https://doi.org/10.1016/j.cis.2019.102060

    Article  CAS  PubMed  Google Scholar 

  9. E.S. Dragan, Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 243, 572–590 (2014). http://doi.org/https://doi.org/https://doi.org/10.1016/j.cej.2014.01.065

    Article  CAS  Google Scholar 

  10. J.P. Gong, Materials both tough and soft. Science. 344, 161–162 (2014). https://doi.org/10.1126/science.1252389

    Article  CAS  PubMed  Google Scholar 

  11. X. Huang, J. Li, J. Luo, Q. Gao, A. Mao, J. Li, Research progress on double-network hydrogels. Mater. Today Commun. 29, 102757 (2021). https://doi.org/10.1016/j.mtcomm.2021.102757

    Article  CAS  Google Scholar 

  12. B.K. Ahn, S. Das, R. Linstadt, Y. Kaufman, N.R. Martinez-Rodriguez, R. Mirshafian, E. Kesselman, Y. Talmon, B.H. Lipshutz, J.N. Israelachvili, J.H. Waite, High-performance mussel-inspired adhesives of reduced complexity. Nat. Commun. 6, 8663 (2015). https://doi.org/10.1038/ncomms9663

    Article  CAS  PubMed  Google Scholar 

  13. L. Petrone, A. Kumar, C.N. Sutanto, N.J. Patil, S. Kannan, A. Palaniappan, S. Amini, B. Zappone, C. Verma, A. Miserez, Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins. Nat. Commun. 6, 8737 (2015). https://doi.org/10.1038/ncomms9737

    Article  CAS  PubMed  Google Scholar 

  14. X. Ou, B. Xue, Y. Lao, Y. Wutthinitikornkit, R. Tian, A. Zou, L. Yang, W. Wang, Y. Cao, J. Li, Structure and sequence features of mussel adhesive protein lead to its salt-tolerant adhesion ability. Sci Adv, 6. (2020). https://doi.org/10.1126/sciadv.abb7620

  15. C. **e, X. Wang, H. He, Y. Ding, X. Lu, Mussel-inspired hydrogels for Self-Adhesive Bioelectronics. Adv. Funct. Mater. 30, 1909954 (2020). https://doi.org/10.1002/adfm.201909954

    Article  CAS  Google Scholar 

  16. T.J. Deming, Mussel Byssus and biomolecular materials. Curr. Opin. Chem. Biol. 3, 100–105 (1999). http://doi.org/https://https://doi.org/10.1016/S1367-5931(99)80018-0

    Article  CAS  PubMed  Google Scholar 

  17. H. Lee, N.F. Scherer, P.B. Messersmith, Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences, 103, 12999–13003. (2006). https://doi.org/10.1073/pnas.0605552103

  18. T. Anderson, J. Israelachvili, Adhesion Mechanisms of the Mussel Foot Proteins mfp-1 and mfp-3. Biophysical Journal, 98, 594a. (2010). https://doi.org/10.1016/j.bpj.2009.12.3232

  19. E. Faure, C. Falentin-Daudré, C. Jérôme, J. Lyskawa, D. Fournier, P. Woisel, Detrembleur. Catechols as versatile platforms in polymer chemistry. Prog. Polym. Sci. 38, 236–270 (2013). https://doi.org/10.1016/j.progpolymsci.2012.06.004

    Article  CAS  Google Scholar 

  20. X. Zhang, Q. Huang, F. Deng, H. Huang, Q. Wan, M. Liu, Y. Wei, Mussel-inspired fabrication of functional materials and their environmental applications: Progress and prospects. Appl. Mater. Today. 7, 222–238 (2017). https://doi.org/10.1016/j.apmt.2017.04.001

    Article  Google Scholar 

  21. J. Horsch, P. Wilke, M. Pretzler, M. Seuss, I. Melnyk, D. Remmler, A. Fery, A. Rompel, Börner. Polymerizing like mussels do: toward Synthetic Mussel Foot proteins and resistant glues. Angew. Chem. Int. Ed. 57, 15728–15732 (2018). https://doi.org/10.1002/anie.201809587

    Article  CAS  Google Scholar 

  22. X. Liu, R. Song, W. Zhang, C. Qi, S. Zhang, J. Li, Development of eco-friendly soy protein isolate films with High Mechanical properties through HNTs, PVA, and PTGE Synergism Effect. Sci. Rep. 7, 44289 (2017). https://doi.org/10.1038/srep44289

    Article  PubMed  PubMed Central  Google Scholar 

  23. Y. Mu, Q. Sun, B. Li, Wan. Advances in the synthesis and applications of mussel-inspired polymers. Polym. Rev. 63, 1–39 (2023). https://doi.org/10.1080/15583724.2022.2041032

    Article  CAS  Google Scholar 

  24. F. Liu, X. Liu, F. Chen, Fu. Mussel-inspired chemistry: a promising strategy for natural polysaccharides in biomedical applications. Prog. Polym. Sci. 123, 101472 (2021). https://doi.org/10.1016/j.progpolymsci.2021.101472

    Article  CAS  Google Scholar 

  25. Q. Guo, J. Chen, J. Wang, H. Zeng, Yu. Recent progress in synthesis and application of mussel-inspired adhesives. Nanoscale. 12, 1307–1324 (2020). https://doi.org/10.1039/c9nr09780e

    Article  CAS  PubMed  Google Scholar 

  26. Y. Hao, L. Mao, R. Zhang, X. Liao, M. Yuan, Liao. Multifunctional biodegradable prussian Blue Analogue for Synergetic Photothermal/Photodynamic/Chemodynamic Therapy and intrinsic Tumor Metastasis Inhibition. ACS Appl. Bio Mater. 4, 7081–7093 (2021). https://doi.org/10.1021/acsabm.1c00694

    Article  CAS  PubMed  Google Scholar 

  27. C. Zhu, S. Zou, Z. Rao, L. Min, M. Liu, L. Liu, L. Fan, Preparation and characterization of hydroxypropyl chitosan modified with nisin. Int. J. Biol. Macromol. 105, 1017–1024 (2017). https://doi.org/10.1016/j.ijbiomac.2017.07.136

    Article  CAS  PubMed  Google Scholar 

  28. L. Yue, M. Wang, I.M. Khan, J. Xu, C. Peng, Z. Wang, Preparation, characterization, and antibiofilm activity of cinnamic acid conjugated hydroxypropyl chitosan derivatives. Int. J. Biol. Macromol. 189, 657–667 (2021). https://doi.org/10.1016/j.ijbiomac.2021.08.164

    Article  CAS  PubMed  Google Scholar 

  29. W. Cao, J. Yan, C. Liu, J. Zhang, H. Wang, X. Gao, H. Yan, B. Niu, W. Li, Preparation and characterization of catechol-grafted chitosan/gelatin/modified chitosan-AgNP blend films. Carbohydr. Polym. 247, 116643 (2020). https://doi.org/10.1016/j.carbpol.2020.116643

    Article  CAS  PubMed  Google Scholar 

  30. C. Souza Campelo, P. Chevallier, C. Loy, R. Silveira Vieira, Mantovani. Development, Validation, and performance of Chitosan-based Coatings using Catechol Coupling. Macromol. Biosci. 20, e1900253 (2020). https://doi.org/10.1002/mabi.201900253

    Article  CAS  PubMed  Google Scholar 

  31. A. Pattnaik, S. Pati, S.K. Samal, Chitosan-Polyphenol Conjugates for Human Health. Life (Basel), 12. (2022). https://doi.org/10.3390/life12111768

  32. Q. Wei, Y. Zhao, Y. Wei, Y. Wang, Z. **, G. Ma, Y. Jiang, W. Zhang, Z. Hu, Facile preparation of polyphenol-crosslinked chitosan-based hydrogels for cutaneous wound repair. Int. J. Biol. Macromol. 228, 99–110 (2023). https://doi.org/10.1016/j.ijbiomac.2022.12.215

    Article  CAS  PubMed  Google Scholar 

  33. Y. Yuan, S. Shen, D. Fan, A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion. Biomaterials. 276, 120838 (2021). https://doi.org/10.1016/j.biomaterials.2021.120838

    Article  CAS  PubMed  Google Scholar 

  34. Z. Zheng, X. Yang, Y. Zhang, W. Zu, M. Wen, T. Liu, C. Zhou, L. Li, An injectable and pH-responsive hyaluronic acid hydrogel as metformin carrier for prevention of Breast cancer recurrence. Carbohydr. Polym. 304, 120493 (2023). https://doi.org/10.1016/j.carbpol.2022.120493

    Article  CAS  PubMed  Google Scholar 

  35. B. Yang, J. Song, Y. Jiang, M. Li, J. Wei, J. Qin, W. Peng, F.L. Lasaosa, Y. He, H. Mao, J. Yang, Z. Gu, ACS Appl. Mater. Interfaces. 12, 57782–57797 (2020). https://doi.org/10.1021/acsami.0c18948. Injectable Adhesive Self-Healing Multicross-Linked Double-Network Hydrogel Facilitates Full-Thickness Skin Wound Healing

    Article  CAS  PubMed  Google Scholar 

  36. J. Chi, A. Li, M. Zou, S. Wang, C. Liu, R. Hu, Z. Jiang, W. Liu, R. Sun, B. Han, Novel dopamine-modified oxidized sodium alginate hydrogels promote angiogenesis and accelerate healing of chronic diabetic wounds. Int. J. Biol. Macromol. 203, 492–504 (2022). https://doi.org/10.1016/j.ijbiomac.2022.01.153

    Article  CAS  PubMed  Google Scholar 

  37. M.N. Roshdy, J.B. Schwartz, R.L. Schnaare, A novel method for measuring gel strength of controlled release hydrogel tablets using a cone/plate rheometer. Pharm. Dev. Technol. 6, 107–116 (2001). https://doi.org/10.1081/pdt-100000046

    Article  CAS  PubMed  Google Scholar 

  38. X. Liu, J. Liu, J. Wang, T. Wang, Y. Jiang, J. Hu, Z. Liu, X. Chen, Yu. Bioinspired, Microstructured Silk Fibroin adhesives for flexible skin sensors. ACS Appl. Mater. Interfaces. 12, 5601–5609 (2020). https://doi.org/10.1021/acsami.9b21197

    Article  CAS  PubMed  Google Scholar 

  39. C. Niu, X. Liu, Y. Wang, X. Li, J. Shi, Photothermal-modulated drug release from a composite hydrogel based on silk fibroin and sodium alginate. Eur. Polymer J. 146, 110267 (2021). https://doi.org/10.1016/j.eurpolymj.2021.110267

    Article  CAS  Google Scholar 

  40. L. Li, N. Wang, X. **, R. Deng, S. Nie, L. Sun, Q. Wu, Y. Wei, C. Gong, Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention. Biomaterials. 35, 3903–3917 (2014). https://doi.org/10.1016/j.biomaterials.2014.01.050

    Article  CAS  PubMed  Google Scholar 

  41. M. Ghorbanloo, N. Moharramkhani, T.M. Yazdely, H.H. Monfared, Cationic hydrogel and graphene oxide based cationic hydrogel with embedded palladium nanoparticles in the aerobic oxidation of olefins. J. Porous Mater. 26, 433–441 (2019). https://doi.org/10.1007/s10934-018-0620-5

    Article  CAS  Google Scholar 

  42. W. Zhang, X. Wang, J. Ma, L. Zhao, C. Yang, K. Wang, X. Pu, Y. Wang, F. Ran, Y. Wang, S. Yu, H. Ma, Preparation of chitosan/pumpkin polysaccharide hydrogel for potential application in drug delivery and tissue engineering. J. Porous Mater. 24 (2017). https://doi.org/10.1007/s10934-016-0285-x

  43. L. Michelini, L. Probo, S. Farè, N. Contessi, Negrini, Characterization of gelatin hydrogels derived from different animal sources. Mater. Lett. 272, 127865 (2020). https://doi.org/10.1016/j.matlet.2020.127865

    Article  CAS  Google Scholar 

  44. W. Zhang, X. Wang, J. Ma, L. Zhao, C. Yang, K. Wang, X. Pu, Y. Wang, F. Ran, Y. Wang, S. Yu, H. Ma, Preparation of chitosan/pumpkin polysaccharide hydrogel for potential application in drug delivery and tissue engineering. J. Porous Mater. 24, 497–506 (2017). https://doi.org/10.1007/s10934-016-0285-x

    Article  CAS  Google Scholar 

  45. R. Zhang, Y. Tian, L. Pang, T. Xu, B. Yu, H. Cong, Y. Shen, Wound Microenvironment-Responsive protein Hydrogel Drug-Loaded System with accelerating Healing and Antibacterial Property. ACS Appl. Mater. Interfaces. 14, 10187–10199 (2022). https://doi.org/10.1021/acsami.2c00373

    Article  CAS  PubMed  Google Scholar 

  46. X. Sheng, X. Li, M. Li, R. Zhang, S. Deng, W. Yang, G. Chang, X. Ye. An Injectable Oxidized Carboxymethyl Cellulose/Polyacryloyl Hydrazide Hydrogel via Schiff Base Reaction. Australian Journal of Chemistry, 71. (2017). https://doi.org/10.1071/CH17214

  47. S. Hocine, D. Ghemati, D. Aliouche, Synthesis, characterization and swelling behavior of pH-sensitive polyvinylalcohol grafted poly(acrylic acid-co-2-acrylamido-2-methylpropane sulfonic acid) hydrogels for protein delivery. Polym. Bull. 1–27 (2023). https://doi.org/10.1007/s00289-022-04664-7

  48. N. Esfandiari, Z. Bagheri, H. Ehtesabi, Z. Fatahi, H. Tavana, H. Latifi, Effect of carbonization degree of carbon dots on cytotoxicity and photo-induced toxicity to cells. Heliyon. 5, e02940 (2019). https://doi.org/10.1016/j.heliyon.2019.e02940

    Article  PubMed  PubMed Central  Google Scholar 

  49. A. Jabbari, H. Mahdavi, M. Nikoorazm, A. Ghorbani-Choghamarani, Oxovanadium(IV) salicylidene Schiff base complex anchored on mesoporous silica MCM-41 as hybrid materials: a robust catalyst for the oxidation of sulfides. J. Porous Mater. 22, 1111–1118 (2015). https://doi.org/10.1007/s10934-015-9986-9

    Article  CAS  Google Scholar 

  50. J. Wu, L. Zhang, Dissolution behavior and conformation change of chitosan in concentrated chitosan hydrochloric acid solution and comparison with dilute and semidilute solutions. Int. J. Biol. Macromol. 121, 1101–1108 (2019). https://doi.org/10.1016/j.ijbiomac.2018.10.128

    Article  CAS  PubMed  Google Scholar 

  51. B.P. Lee, J.L. Dalsin, P.B. Messersmith, Synthesis and gelation of DOPA-Modified poly(ethylene glycol) hydrogels. Biomacromolecules. 3, 1038–1047 (2002). https://doi.org/10.1021/bm025546n

    Article  CAS  PubMed  Google Scholar 

  52. C. Zhang, K. Li, J. Simonsen, A novel wood-binding domain of a wood–plastic coupling agent: development and characterization. J. Appl. Polym. Sci. 89, 1078–1084 (2003). https://doi.org/10.1002/app.12257

    Article  CAS  Google Scholar 

  53. M.W. Sabaa, A.M. Elzanaty, O.F. Abdel-Gawad, E.G. Arafa, Synthesis, characterization and antimicrobial activity of Schiff bases modified chitosan-graft-poly(acrylonitrile). Int. J. Biol. Macromol. 109, 1280–1291 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.129

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank for this work was supported by National Natural Science Foundation of China (No. 81560737, 32260231 and 31860250), Gansu Provincial Natural Science Fund (No. 23JRRA840), University teachers’ innovation fund project of Gansu Province in China (2023 A-020), Science and Technology Innovation Special Fund Project of Gansu Province, China (2019ZX-05), Foundation for Innovation Groups of Basic Research in Gansu Province (No. 1506RJIA116) and Gansu Provincial Science and Technology-based Small and Medium-sized Enterprises Technological Innovation Fund (No. 23CXGA0125).

Author information

Authors

Contributions

XL. Z: Conceptualization, Reviewing. LY. L: Writing-review & editing. WP. W and CH. Z: Formal analysis, Investigation. Y. L, L. L and TK. Z: Data curation, Validation. WJ. Z: Project administration Supervision.

Corresponding author

Correspondence to Weijie Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Lu, L., Wan, W. et al. Preparation and characterization of mussel-inspired dual-crosslinked hydrogels based on hydroxypropyl chitosan. J Porous Mater 31, 611–624 (2024). https://doi.org/10.1007/s10934-023-01535-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01535-y

Keywords

Navigation