Log in

Green synthesized AgNPs using Clitoria ternatea extract and its confinement on SBA-15/GPTMS-TAEA for controlled drug release of ciprofloxacin

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Ag nanoparticles (Ag NPs) were synthesized using Clitoria ternatea plant extract and confined onto mesoporous SBA-15, functionalized with 3-glycidoxypropyl trimethoxysilane followed by tris (2-amino ethyl) amine (SBA-15/GPTMS-TAEA). The sequential grafting of TAEA, GPTMS, and confinement of Ag NPs on the mesoporous SBA-15 was verified by various spectroscopic and microscopic techniques such as FT-IR, SEM, TEM-EDX, XRD, SAXRD, BET, TGA, 29Si NMR, and 13C MAS NMR analysis. HR-TEM analysis revealed that the mean diameter of green synthesized Ag NPs is 6–8 nm and the successful confinement of Ag NPs inside the pores of SBA-15/GPTMS-TAEA. The synthesized SBA-15/GPTMS-TAEA-Ag was used are a carrier for binding ciprofloxacin and the controlled drug release of ciprofloxacin was monitored on a UV–Vis spectrophotometer. In Vitro, the loading and release of Ciprofloxacin were found to be 19.8% and 98.14% of the loaded Ciprofloxacin. The kinetic models deducted from the release study demonstrated that SBA-15/GPTMS-TAEA-Ag is a potential carrier for the controlled release of Ciprofloxacin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. **a, S.C. Lenaghan, M. Zhang, Z. Zhang, Q. Li, Naturally occurring nanoparticles from English ivy: an alternative to metal-based nanoparticles for UV protection. J. Nanobiotechnol. 8, 1–9 (2010). https://doi.org/10.1186/1477-3155-8-12

    Article  CAS  Google Scholar 

  2. S.B. Aziz, G. Hussein, M.A. Brza, S.J. Mohammed, T.R. Abdulwahid, S.R. Saeed, A. Hasssanzadeh, Fabrication of interconnected plasmonic spherical silver nanoparticles with enhanced localized surface plasmon resonance (LSPR) peaks using quince leaf extract solution. Nanomaterials (2019). https://doi.org/10.3390/nano9111557

    Article  PubMed  PubMed Central  Google Scholar 

  3. D. Prema, S. Thamaraiselvi, R. Yamuna, Encapsulation of N-phenyl p-phenylenediamine into β-CD: spectral, molecular modelling studies and sensor application for detecting Fe2+ ion. J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.113990

    Article  Google Scholar 

  4. D.S. Abraham, M. Chandran, M. Vinoba, R. Yamuna, M. Bhagiyalakshmi, Flower-like layered NiCu-LDH/MXene nanocomposites as an anodic material for electrocatalytic oxidation of methanol. Langmuir. (2023). https://doi.org/10.1021/acs.langmuir.3c00154

    Article  PubMed  Google Scholar 

  5. G. Nandhini, B. Nivedha, M. Pranesh, M. Karthega, Study of polycaprolactone/curcumin loaded electrospun nanofibers on AZ91 magnesium alloy. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.03.327

    Article  Google Scholar 

  6. D. Tripathi, A. Modi, G. Narayan, S.P. Rai, Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Mater. Sci. Eng.: C (2019). https://doi.org/10.1016/j.msec.2019.02.113

    Article  Google Scholar 

  7. M. Pandian, V. Selvaprithviraj, A. Pradeep, J. Rangasamy, In-situ silver nanoparticles incorporated N, O-carboxymethyl chitosan-based adhesive, self-healing, conductive, antibacterial and anti-biofilm hydrogel. Int. J. Biol. Macromol. (2021). https://doi.org/10.1016/j.ijbiomac.2021.08.040

    Article  PubMed  Google Scholar 

  8. N. Krithiga, A. Rajalakshmi, A. Jayachitra, Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J. Nanosci. (2015). https://doi.org/10.1155/2015/928204

    Article  Google Scholar 

  9. M. Thirunavoukkarasu, U. Balaji, S. Behera, P.K. Panda, B.K. Mishra, Biosynthesis of silver nanoparticle from leaf extract of Desmodium gangeticum (L.) DC. and its biomedical potential. Spectrochim. Acta A Mol. Biomol. Spectrosc. (2013). https://doi.org/10.1016/j.saa.2013.07.033

    Article  PubMed  Google Scholar 

  10. V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, B. Sreedhar, Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng.: C (2016). https://doi.org/10.1016/j.msec.2015.08.018

    Article  Google Scholar 

  11. A. Saravanakumar, M.M. Peng, M. Ganesh, J. Jayaprakash, M. Mohankumar, H.T. Jang, Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties. Artif. Cells Nanomed. Biotechnol. (2017). https://doi.org/10.1080/21691401.2016.1203795

    Article  PubMed  Google Scholar 

  12. B. Mahitha, B. Raju, G. Dillip, C. Reddy, K. Mallikarjuna, L. Manoj, S. Priyanaka, K. Rao, N. Sushma, Biosynthesis, characterization and antimicrobial studies of AgNPs extract from Bacopa monniera whole plant. Dig. J. Nanomater. Biostruct. 6(2), 135–142 (2011). https://doi.org/10.4061/2011/454090

    Article  CAS  Google Scholar 

  13. F. Nematollahi, Silver nanoparticles green synthesis using aqueous extract of Salvia limbata CA Mey. Int. J. Biosci. (2015). https://doi.org/10.12692/ijb/6.2.30-35

    Article  Google Scholar 

  14. J.K. Patra, G. Das, H.-S. Shin, Facile green biosynthesis of silver nanoparticles using Pisum sativum L. outer peel aqueous extract and its antidiabetic, cytotoxicity, antioxidant, and antibacterial activity. Int. J. Nanomed. (2019). https://doi.org/10.2147/IJN.S212614

    Article  Google Scholar 

  15. D. Khwannimit, R. Maungchang, P. Rattanakit, Green synthesis of silver nanoparticles using Clitoria ternatea flower: an efficient catalyst for removal of methyl orange. Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1793974

    Article  Google Scholar 

  16. G.K. Oguis, E.K. Gilding, M.A. Jackson, D.J. Craik, Butterfly pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine. Front. Plant. Sci. (2019). https://doi.org/10.3389/fpls.2019.00645

    Article  PubMed  PubMed Central  Google Scholar 

  17. S. Kim, D. Ryu, Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J. Appl. Toxicol. (2013). https://doi.org/10.1002/jat.2792

    Article  PubMed  Google Scholar 

  18. I. Castangia, F. Marongiu, M. Manca, R. Pompei, F. Angius, A. Ardu, A. Fadda, M. Manconi, G. Ennas, Combination of grape extract-silver nanoparticles and liposomes: a totally green approach. Eur. J. Pharm. Sci. (2017). https://doi.org/10.1016/j.ejps.2016.11.006

    Article  PubMed  Google Scholar 

  19. S.-W. Song, K. Hidajat, S. Kawi, Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix—drug interactions. Langmuir (2005). https://doi.org/10.1021/la051167e

    Article  PubMed  Google Scholar 

  20. C. Shen, J. Wang, Z. Tang, H. Lian, J. Zhang, C. Cao, Physicochemical properties of poly(ethylene oxide)-based composite polymer electrolytes with a silane-modified mesoporous silica SBA-15. Electrochim. Acta. (2009). https://doi.org/10.1016/j.electacta.2009.01.014

    Article  Google Scholar 

  21. M. Manzano, M. Vallet-Regí, Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater. (2020). https://doi.org/10.1002/adfm.201902634

    Article  Google Scholar 

  22. F. Sevimli, A. Yılmaz, Surface functionalization of SBA-15 particles for amoxicillin delivery. Microporous Mesoporous Mater. (2012). https://doi.org/10.1016/j.micromeso.2012.02.037

    Article  Google Scholar 

  23. D.H. Hwang, D. Lee, H. Lee, D. Choe, S.H. Lee, K. Lee, Surface functionalization of SBA-15 particles for ibuprofen delivery. Korean J. Chem. Eng. (2010). https://doi.org/10.1007/s11814-010-0225-4

    Article  Google Scholar 

  24. A. Kiwilsza, B. Milanowski, K. Druzbicki, L. Coy, M. Grzeszkowiak, M. Jarek, J. Mielcarek, J. Lulek, A. Pajzderska, J. Wasicki, Mesoporous drug carrier systems for an enhanced delivery rate of poorly water-soluble drug: nimodipine. J. Porous Mater. (2015). https://doi.org/10.1007/s10934-015-9955-3

    Article  Google Scholar 

  25. G. Wang, A.N. Otuonye, E.A. Blair, K. Denton, Z. Tao, T. Asefa, Functionalized mesoporous materials for adsorption and release of different drug molecules: a comparative study. J. Solid State Chem. (2009). https://doi.org/10.1016/j.jssc.2009.03.034

    Article  PubMed  PubMed Central  Google Scholar 

  26. G.C. Carvalho, R. Sabio, de T. Cassia Ribeiro, A. Monteiro, D. Pereira, S. Ribeiro, M. Chorilli, Highlights in mesoporous silica nanoparticles as a multifunctional controlled drug delivery nanoplatform for infectious diseases treatment. Pharm. Res. (2020). https://doi.org/10.1007/s11095-020-02917-6

    Article  PubMed  PubMed Central  Google Scholar 

  27. T.M. Albayati, I.K. Salih, H.F. Alazzawi, Synthesis and characterization of a modified surface of SBA-15 mesoporous silica for a chloramphenicol drug delivery system. Heliyon (2019). https://doi.org/10.1016/j.heliyon.2019.e02539

    Article  PubMed  PubMed Central  Google Scholar 

  28. Q. Zhang, K. Neoh, L. Xu, S. Lu, E. Kang, R. Mahendran, E. Chiong, Functionalized mesoporous silica nanoparticles with mucoadhesive and sustained drug release properties for potential bladder cancer therapy. Langmuir. (2014). https://doi.org/10.1021/la500746e

    Article  PubMed  PubMed Central  Google Scholar 

  29. A. Saad, Y. Snoussi, M. Abderrabba, M.M. Chehimi, Ligand-modified mesoporous silica SBA-15/silver hybrids for the catalyzed reduction of methylene blue. RSC Adv. (2016). https://doi.org/10.1039/C6RA12061J

    Article  Google Scholar 

  30. M. Barczak, Functionalization of mesoporous silica surface with carboxylic groups by Meldrum’s acid and its application for sorption of proteins. J. Porous Mater. (2019). https://doi.org/10.1007/s10934-018-0655-7

    Article  Google Scholar 

  31. X. Fei, S. Chen, D. Liu, C. Huang, Y. Zhang, Comparison of amino and epoxy functionalized SBA-15 used for carbonic anhydrase immobilization. J. Biosci. Bioeng. (2016). https://doi.org/10.1016/j.jbiosc.2016.02.004

    Article  PubMed  Google Scholar 

  32. H. Sun, X.Y. Bao, X.S. Zhao, Immobilization of penicillin G acylase on oxirane-modified mesoporous silicas. Langmuir. (2009). https://doi.org/10.1021/la803480c

    Article  PubMed  Google Scholar 

  33. M. Vinoba, S.-K. Jeong, M. Bhagiyalakshmi, M. Alagar, Electrocatalytic reduction of hydrogen peroxide on silver nanoparticles stabilized by amine grafted mesoporous SBA-15. Bull. Korean Chem. Soc. (2010). https://doi.org/10.5012/bkcs.2010.31.12.3668

    Article  Google Scholar 

  34. M. Bhagiyalakshmi, L.J. Yun, R. Anuradha, H.T. Jang, Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting. J. Hazard. Mater. (2010). https://doi.org/10.1016/j.jhazmat.2009.10.097

    Article  PubMed  Google Scholar 

  35. D. Brunel, Functionalized micelle-templated silicas (MTS) and their use as catalysts for fine chemicals. Microporous Mesoporous Mater. (1999). https://doi.org/10.1016/S1387-1811(98)00266-2

    Article  Google Scholar 

  36. X. Liu, D. Astruc, From galvanic to anti-galvanic synthesis of bimetallic nanoparticles and applications in catalysis, sensing, and materials science. Adv. Mater. (2017). https://doi.org/10.1002/adma.201605305

    Article  PubMed  PubMed Central  Google Scholar 

  37. K. Alaqad, T.A. Saleh, Gold, and silver nanoparticles: synthesis methods, characterization routes and applications towards drugs. J. Environ. Anal. Toxicol. (2016). https://doi.org/10.4172/2161-0525.1000384

    Article  Google Scholar 

  38. R. Mellaerts, J. Jammaer, Van M. Speybroeck, H. Chen, J. Humbeeck, P. Augusti**s, Van den G. Mooter, J. Martens, Physical state of poorly water-soluble therapeutic molecules loaded into SBA-15 ordered mesoporous silica carriers: a case study with itraconazole and ibuprofen. Langmuir. (2008). https://doi.org/10.1021/la801161g

    Article  PubMed  Google Scholar 

  39. K.T. Savjani, A.K. Gajjar, J.K. Savjani, Drug solubility: importance and enhancement techniques. Int. Sch. Res. Notices. (2012). https://doi.org/10.5402/2012/195727

    Article  Google Scholar 

  40. V.F. Vavsari, G.M. Ziarani, A. Badiei, The role of SBA-15 in drug delivery. RSC Adv. (2015). https://doi.org/10.1039/C5RA17780D

    Article  Google Scholar 

  41. M. Vinoba, M. Bhagiyalakshmi, S.K. Jeong, Y.I. Yoon, S.C. Nam, Capture and sequestration of CO2 by human carbonic anhydrase covalently immobilized onto amine-functionalized SBA-15. J. Phys. Chem. C (2011). https://doi.org/10.1021/jp204661v

    Article  Google Scholar 

  42. Y. Li, H. Zhang, Nanoparticle-based drug delivery systems for enhanced tumor-targeting treatment. J. Biomed. Nanotechnol. (2019). https://doi.org/10.1166/jbn.2019.2670

    Article  PubMed  Google Scholar 

  43. P. Banthia, L. Gambhir, A. Sharma, D. Daga, N. Kapoor, R. Chaudhary, G. Sharma, Nano to rescue: repository of nanocarriers for targeted drug delivery to cure breast cancer. 3 Biotech. 12(3), 70 (2022). https://doi.org/10.1007/s13205-022-03121-6

    Article  PubMed  PubMed Central  Google Scholar 

  44. S.S.E. Ghodsinia, B. Akhlaghinia, CuI anchored onto mesoporous SBA-16 functionalized by aminated 3-glycidyloxypropyltrimethoxysilane with thiosemicarbazide (SBA-16/GPTMS-TSC-CuI): a heterogeneous mesostructured catalyst for: S-arylation reaction under solvent-free conditions. Green Chem. (2019). https://doi.org/10.1039/c8gc03931c

    Article  Google Scholar 

  45. F. Dalayi, L. Hajiaghababaei, A. Badiei, E. Boorboor Azimi, M.R. Ganjali, G. Mohammadi, Ziarani, Tris (2-aminoethyl) amine functionalized nanoporous silica SBA-15 as a potential drug carrier for citalopram. Int. J. Basic Sci. Med. (2019). https://doi.org/10.34172/ijbsm.2019.06

    Article  Google Scholar 

  46. M. Bhagiyalakshmi, S. Do Park, W.S. Cha, H.T. Jang, Development of TREN dendrimers over mesoporous SBA-15 for CO2 adsorption. Appl. Surf. Sci. (2010). https://doi.org/10.1016/j.apsusc.2010.04.066

    Article  Google Scholar 

  47. Z. Hoşgör, N. Kayaman-Apohan, S. Karataş, Y. Menceloğlu, A. Güngör, Preparation and characterization of phosphine oxide based polyurethane/silica nanocomposite via non-isocyanate route. Prog Org. Coat. (2010). https://doi.org/10.1016/j.porgcoat.2010.07.010

    Article  Google Scholar 

  48. A.Z. Mirza, F.A. Siddiqui, Nanomedicine and drug delivery: a mini review. Int. Nano Lett. (2014). https://doi.org/10.1007/s40089-014-0094-7

    Article  Google Scholar 

  49. M.A. Wahab, I. Imae, Y. Kawakami, C.S. Ha, Periodic mesoporous organosilica materials incorporating various organic functional groups: synthesis, structural characterization, and morphology. Chem. Mater. (2005). https://doi.org/10.1021/cm0480059

    Article  Google Scholar 

  50. S.H. Hussein-Al-Ali, S.M. Abudoleh, Q.I.A. Abualassal, Z. Abudayeh, Y. Aldalahmah, M.Z. Hussein, Preparation and characterisation of ciprofloxacin-loaded silver nanoparticles for drug delivery. IET Nanobiotechnol. (2022). https://doi.org/10.1049/nbt2.12081

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank CoE-AMGT (MHRD, New Delhi) center for the instrumental facility. We acknowledge Amrita Center for Nanosciences and Molecular Medicine (ACNSMM), AIMS Kochi for recording XPS and TEM images.

Author information

Authors and Affiliations

Authors

Contributions

SHP contributed to the material synthesis, design of experiments, formal analysis, data analysis, writing the original manuscript and ADR contributed to the investigation, data analysis, writing the manuscript. MV contributed to the formal analysis, RY and MB contributed to the conceptualization, supervision, validation, reviewing and editing. The final manuscript was revised and approved by all authors.

Corresponding authors

Correspondence to R. Yamuna or Margandan Bhagiyalakshmi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10934_2023_1515_MOESM1_ESM.doc

Instrumentation details, the SAED images of Ag NPs, and SBA-15/GPTMS-TAEA-Ag nanocomposites, drug release kinetics table and UV–Vis spectra are given in the supporting material. Supplementary material 1 (DOC 3442.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shree Haripriya, B., Anakha, D.R., Yamuna, R. et al. Green synthesized AgNPs using Clitoria ternatea extract and its confinement on SBA-15/GPTMS-TAEA for controlled drug release of ciprofloxacin. J Porous Mater 31, 351–363 (2024). https://doi.org/10.1007/s10934-023-01515-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-023-01515-2

Keywords

Navigation