Log in

Photocatalytic hydrogen evolution from water by the anatase prepared on resorcinol–formaldehyde resin sphere

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Room temperature crystallization of anatase on the spherical particles of resorcinol–formaldehyde resin with the average diameter of 766 nm was examined by the reaction of titanium tetraisopropoxide with the spherical particles and the subsequent exposure to the hydrochloric acid vapor. The resulting anatase-resin hybrid particle was shown to be photocatalysts for hydrogen evolution from aqueous methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.H. Braun, A. Baidins, R.E. Marganski, TiO2 pigment technology: a review. Prog. Org. Coat. 20, 105–138 (1992)

    Article  CAS  Google Scholar 

  2. G. Pfaff, P. Reynders, Angle-dependent optical effects deriving from submicron structures of films and pigments. Chem. Rev. 99, 1963–1982 (1999)

    Article  CAS  Google Scholar 

  3. A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008)

    Article  CAS  Google Scholar 

  4. A. Salvador, M.C. Pascual-Martí, J.R. Adell, A. Requeni, J.G. March, Analytical methodologies for atomic spectrometric determination of metallic oxides in UV sunscreen creams. J. Pharm. Biomed. Anal. 22, 301–306 (2000)

    Article  CAS  Google Scholar 

  5. K. Shiba, M. Ogawa, Precise synthesis of well-defined inorganic-organic hybrid particles. Chem. Rec. 18, 950–968 (2018)

    Article  CAS  Google Scholar 

  6. M. Ogawa, K. Ikeue, M. Anpo, Transparent self-standing films of titanium-containing nanoporous silica. Chem. Mater. 13, 2900–2904 (2001)

    Article  CAS  Google Scholar 

  7. S. Elumalai, M. Yoshimura, M. Ogawa, Simultaneous delamination and rutile formation on the surface of Ti3C2Tx MXene for copper adsorption. Chem. Asian J. 15, 1044–1051 (2020)

    Article  CAS  Google Scholar 

  8. S. Deepracha, L. Atfane, A. Ayral, M. Ogawa, Simple and efficient method for functionalizing photocatalytic ceramic membranes and assessment of its applicability for wastewater treatment in up-scalable membrane reactors. Sep. Purif. Tech. 262, 118307 (2021)

    Article  CAS  Google Scholar 

  9. K. Ikeue, S. Nozaki, M. Ogawa, M. Anpo, Photocatalytic reduction of CO2 with H2O on Ti-containing porous silica thin film photocatalysts. Catal. Lett. 80, 111–114 (2002)

    Article  CAS  Google Scholar 

  10. A. Corma, M.T. Navarro, J.P. Pariente, Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. J. Chem. Soc., Chem. Commun. (1994). https://doi.org/10.1039/c39940000147

    Article  Google Scholar 

  11. L. Marchese, E. Gianotti, V. Dellarocca, T. Maschmeyer, F. Rey, S. Coluccia, J.M. Thomas, Structure-functionality relationships of grafted Ti-MCM41 silicas. Spectroscopic and catalytic studies. Phys. Chem. Chem. Phys. 1, 585–592 (1999)

    Article  CAS  Google Scholar 

  12. L. Zhao, J. Yu, Controlled synthesis of highly dispersed TiO2 nanoparticles using SBA-15 as hard template. J. Colloid Interface Sci. 304, 84–91 (2006)

    Article  CAS  Google Scholar 

  13. Z. Jiang, Z. Huang, W. Guo, W. Shangguan, Photocatalytic overall water splitting on isolated semiconductor photocatalyst sites in an ordered mesoporous silica matrix: a multiscale strategy. J. Catal. 370, 210–223 (2019)

    Article  CAS  Google Scholar 

  14. S. Fukahori, H. Ichiura, T. Kitaoka, H. Tanaka, Capturing of bisphenol a photodecomposition intermediates by composite TiO2–zeolite sheets. Appl. Catal. B 46, 453–462 (2003)

    Article  CAS  Google Scholar 

  15. T. Hisanaga, K. Tanaka, Photocatalytic degradation of benzene on zeolite-incorporated TiO2 film. J. Hazard. Mater. 93, 331–337 (2002)

    Article  CAS  Google Scholar 

  16. S. Deepracha, S. Bureekaew, M. Ogawa, Synergy effects of the complexation of a titania and a smectite on the film formation and its photocatalyst’ performance. Appl. Clay Sci. 169, 129–134 (2019)

    Article  CAS  Google Scholar 

  17. D. Papoulis, S. Komarneni, D. Panagiotaras, E. Stathatos, D. Toli, K.C. Christoforidis, M. Fernández-García, H. Li, S. Yin, T. Sato, H. Katsuki, Halloysite–TiO2 nanocomposites: synthesis, characterization and photocatalytic activity. Appl. Catal. B 132–133, 416–422 (2013)

    Article  Google Scholar 

  18. E. Ruiz-Hitzky, P. Aranda, M. Akkari, N. Khaorapapong, M. Ogawa, Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles. Beilstein J. Nanotechnol. 10, 1140–1156 (2019)

    Article  CAS  Google Scholar 

  19. K. Vibulyaseak, S. Deepracha, M. Ogawa, Immobilization of titanium dioxide in mesoporous silicas: structural design and characterization. J. Solid State Chem. 270, 162–172 (2019)

    Article  CAS  Google Scholar 

  20. K. Vibulyaseak, S. Bureekaew, M. Ogawa, Size-controlled synthesis of anatase in a mesoporous silica, SBA-15. Langmuir 33, 13598–13603 (2017)

    Article  CAS  Google Scholar 

  21. K. Vibulyaseak, B. Ohtani, M. Ogawa, Crystallization of well-defined anatase nanoparticles in SBA-15 for the photocatalytic decomposition of acetic acid. RSC Adv. 10, 32350–32356 (2020)

    Article  CAS  Google Scholar 

  22. K. Vibulyaseak, W.-A. Chiou, M. Ogawa, Preferential immobilization of size-controlled anatase nanoparticles in mesopores. Chem. Comm. 55, 8442–8445 (2019)

    Article  CAS  Google Scholar 

  23. K. Vibulyaseak, A. Kudo, M. Ogawa, Template synthesis of well-defined rutile nanoparticles by solid-state reaction at room temperature. Inorg. Chem. 59, 7934–7938 (2020)

    Article  CAS  Google Scholar 

  24. N. Paengjun, K. Vibulyaseak, M. Ogawa, Heterostructural transformation of mesoporous silica–titania hybrids. Sci. Rep. 11, 3210 (2021)

    Article  CAS  Google Scholar 

  25. S.A. Al-Muhtaseb, J.A. Ritter, Preparation and properties of resorcinol–formaldehyde organic and carbon Gels. Adv. Mater. 15, 101–114 (2003)

    Article  CAS  Google Scholar 

  26. J. Liu, S.Z. Qiao, H. Liu, J. Chen, A. Orpe, D. Zhao, G.Q. Lu, Extension of the Stöber method to the preparation of monodisperse resorcinol–formaldehyde resin polymer and carbon spheres. Angew. Chem. Int. Ed. 50, 5947–5951 (2011)

    Article  CAS  Google Scholar 

  27. G. Zhang, C. Ni, L. Liu, G. Zhao, F. Fina, J.T.S. Irvine, Macro-mesoporous resorcinol–formaldehyde polymer resins as amorphous metal-free visible light photocatalysts. J. Mater. Chem. A 3, 15413–15419 (2015)

    Article  CAS  Google Scholar 

  28. H. **, H. Zhang, H. Zhong, J. Zhang, Nitrogen-doped carbon xerogel: a novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells. Energy Environ. Sci. 4, 3389–3394 (2011)

    Article  CAS  Google Scholar 

  29. M. Glora, M. Wiener, R. Petričević, H. Pröbstle, J. Fricke, Integration of carbon aerogels in PEM fuel cells. J. Non-Cryst. Solids 285, 283–287 (2001)

    Article  CAS  Google Scholar 

  30. J. Wang, X. Wang, Q. Chen, H. Xu, M. Dai, M. Zhang, W. Wang, H. Song, Microstructural modification of hollow TiO2 nanospheres and their photocatalytic performance. Appl. Surf. Sci. 535, 147641 (2021)

    Article  CAS  Google Scholar 

  31. M. Thovicha, V. Pavarajarn, Fabrication of mesoporous titanium dioxide assisted by resorcinol/formaldehyde gel. ASEAN J. Chem. Eng. 11, 28–34 (2011)

    Article  Google Scholar 

  32. O. Czakkel, E. Geissler, I. Szilágyi, K. László, TiO2-doped resorcinol-formaldehyde (RF) polymer and carbon gels with catalytic activity. Environ. Sci. Nano 1, 23 (2013)

    Google Scholar 

  33. F. Pellegrino, L. Pellutiè, F. Sordello, C. Minero, E. Ortel, V.-D. Hodoroaba, V. Maurino, Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles. Appl. Catal. B 216, 80–87 (2017)

    Article  CAS  Google Scholar 

  34. H. Liu, J.B. Joo, M. Dahl, L. Fu, Z. Zeng, Y. Yin, Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity. Energy Environ. Sci. 8, 286–296 (2015)

    Article  CAS  Google Scholar 

  35. H. Duan, T. Qiu, Z. Zhang, L. Guo, J. Ye, X. Li, The atmospheric pressure synthesis of TiO2@carbon nanocomposite microspheres and the enhanced photocatalytic performance. Mater. Lett. 153, 51–54 (2015)

    Article  CAS  Google Scholar 

  36. J.B. Joo, H. Liu, Y.J. Lee, M. Dahl, H. Yu, F. Zaera, Y. Yin, Tailored synthesis of C@TiO2 yolk–shell nanostructures for highly efficient photocatalysis. Catal. Today 264, 261–269 (2016)

    Article  CAS  Google Scholar 

  37. U. Balachandran, N.G. Eror, Raman spectra of titanium dioxide. J. Solid State Chem. 42, 276–282 (1982)

    Article  CAS  Google Scholar 

  38. T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7, 321–324 (1978)

    Article  Google Scholar 

  39. M. Ocaña, J.V. Garcia-Ramos, C.J. Serna, Low-temperature nucleation of rutile observed by Raman spectroscopy during crystallization of TiO2. J. Am. Ceram. Soc. 75, 2010–2012 (1992)

    Article  Google Scholar 

  40. G.A. Tompsett, G.A. Bowmaker, R.P. Cooney, J.B. Metson, K.A. Rodgers, J.M. Seakins, The Raman spectrum of brookite, TiO2 (Pbca, Z = 8). J. Raman Spectrosc. 26, 57–62 (1995)

    Article  CAS  Google Scholar 

  41. R. Loudon, The Raman effect in crystals. Adv. Phys. 13, 423–482 (1964)

    Article  CAS  Google Scholar 

  42. S. Hyunho, J.H. Suk, H.K. Sun, L. Jung-Kun, Crystallization process of TiO2 nanoparticles in an acidic solution. Chem. Lett. 33, 1382–1383 (2004)

    Article  Google Scholar 

  43. Z. Jiang, Z. Zhang, W. Shangguan, M.A. Isaacs, L.J. Durndell, C.M.A. Parlett, A.F. Lee, Photodeposition as a facile route to tunable Pt photocatalysts for hydrogen production: on the role of methanol. Catal. Sci. Tech. 6, 81–88 (2016)

    Article  Google Scholar 

  44. M. Gopal, W.J. Moberly Chan, L.C. De Jonghe, Room temperature synthesis of crystalline metal oxides. J. Mater. Sci. 32, 6001–6008 (1997)

    Article  CAS  Google Scholar 

  45. R.A. Burns, J.C. Crittenden, D.W. Hand, V.H. Selzer, L.L. Sutter, S.R. Salman, Effect of inorganic ions in heterogeneous photocatalysis of TCE. J. Environ. Eng. Sci. 125, 77–85 (1999)

    CAS  Google Scholar 

  46. M. Lindner, D.W. Bahnemann, B. Hirthe, W.D. Griebler, Novel TiO2 powders as highly active photocatalysts. J. Sol. Energy Eng. 119, 120–125 (1997)

    Article  CAS  Google Scholar 

  47. S. Deepracha, A. Ayral, M. Ogawa, Acceleration of the photocatalytic degradation of organics by in-situ removal of the products of degradation. Appl. Catal. B 284, 119705 (2021)

    Article  CAS  Google Scholar 

  48. R.W. Matthews, Hydroxylation reactions induced by near-ultraviolet photolysis of aqueous titanium dioxide suspensions. J. Chem. Soc., Faraday Trans. I 80, 457–471 (1984)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for Distinguished Professor Grant (Grant Number N41A640072) from the National Research Council of Thailand (NRCT) Thailand, Moonshot project (Grant Number JPNP18016) from the New Energy and Industrial Technology Development Organization (NEDO) Japan. K.V., T.S., A.P., and N.P. acknowledge Vidyasirimedhi Institute of Science and Technology (VISTEC) for the scholarship to their Ph.D. study.

Author information

Authors and Affiliations

Authors

Contributions

KV: Methodology, Investigation, Visualization, Writing—Original Draft.; TS: Methodology, Visualization, Writing—Review & Editing.; AP and NP: Visualization, Formal analysis, Writing—Review & Editing.; MO (Corresponding author): Conceptualization and supervision, Writing—Review & Editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Makoto Ogawa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vejchakul, K., Saothayanun, T., Phuekphong, A. et al. Photocatalytic hydrogen evolution from water by the anatase prepared on resorcinol–formaldehyde resin sphere. J Porous Mater 30, 303–310 (2023). https://doi.org/10.1007/s10934-022-01339-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01339-6

Keywords

Navigation