Log in

Preparation and electrochemical properties of hollow carbon spheres/sulfur co-doped with N and O for high-performance lithium-sulfur batteries

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Hollow Carbon Spheres co-doped with nitrogen(N) and oxygen(O) (NOHCS) with high specific surface area (422 m2 g− 1) have been successfully fabricated through calcination and carbonization in nitrogen gas in the presence of SiO2 nanoparticles as the templating agent, phenolic resin as the carbon precursor, and melamine as the nitrogen precursor. The material has hierarchical porous structure, hollow frame and synergistic effect of N and O, which can alleviate the volume expansion effect, increase the sulfur load, significantly improve the conductivity of carbon material, and effectively alleviate the shuttle effect of lithium-sulfur battery. The NOHCS/S-0.12 composite material has a very high initial discharge capacity of 1029 mAh g− 1 and a specific capacity of 541 mAh g− 1 after 200 cycles at 0.1 C, showing good cycling stability. It has strong electrochemical reversibility and small electrochemical impedance of the cell, which shows electrode polarization of only 0.38 V. These results indicate that the hollow structure has a synergistic effect with N and O co-do**, effectively limiting the dissolution and diffusion of polysulfide. N–O co-doped hollow carbon spheres have good development potential in the application of lithium-sulfur batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Zhu, P. Zhu, C. Yan, X. Dong, X. Zhang, Prog. Polym. Sci. 90, 118 (2019). https://doi.org/10.1016/j.progpolymsci.2018.12.002

    Article  CAS  Google Scholar 

  2. A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Chem. Rev. 114, 11751 (2014). https://doi.org/10.1021/cr500062v

    Article  CAS  Google Scholar 

  3. D. Kim, G. Kim, S. Oh et al., ACS Sustain. Chem. Eng. 8, 8537 (2020). https://doi.org/10.1021/acssuschemeng.0c00628

    Article  CAS  Google Scholar 

  4. Z. **, M. Zhao, T. Lin et al., Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124315

    Article  Google Scholar 

  5. L. Suo, Y.S. Hu, H. Li, M. Armand, L. Chen, Nat. Commun (2013). https://doi.org/10.1038/ncomms2513

    Article  Google Scholar 

  6. M.D. Tikekar, S. Choudhury, Z. Tu, L.A. Archer, Nat Energy (2016). https://doi.org/10.1038/nenergy.2016.114

    Article  Google Scholar 

  7. L. Zhang, Y. Wang, Z. Niu, J. Chen, Carbon 141, 400 (2019). https://doi.org/10.1016/j.carbon.2018.09.067

    Article  CAS  Google Scholar 

  8. R. Zhang, X. Chen, X. Shen et al., Joule 2, 764 (2018). https://doi.org/10.1016/j.joule.2018.02.001

    Article  CAS  Google Scholar 

  9. D.-W. Wang, Q. Zeng, G. Zhou et al., J. Mater. Chem. A 1, 9382 (2013). https://doi.org/10.1039/c3ta11045a

    Article  CAS  Google Scholar 

  10. Z. Chang, Y. Qiao, J. Wang, H. Deng, P. He, H. Zhou, Energy Storage Mater. 25, 164 (2020). https://doi.org/10.1016/j.ensm.2019.10.018

    Article  Google Scholar 

  11. H. Shao, F. Ai, W. Wang et al., J. Mater. Chem. A 5, 19892 (2017). https://doi.org/10.1039/c7ta05192a

    Article  CAS  Google Scholar 

  12. T. Lei, W. Chen, W. Lv et al., Joule 2, 2091 (2018)

    Article  CAS  Google Scholar 

  13. Y.S. Su, A. Manthiram, Nat Commun (2012). https://doi.org/10.1038/ncomms2163

    Article  Google Scholar 

  14. A.A. Razzaq, Y.Z. Yao, R. Shah et al., Energy Storage Mater. 16, 194 (2019). https://doi.org/10.1016/j.ensm.2018.05.006

    Article  Google Scholar 

  15. J. Wang, Y. Liu, M. Cheng et al., Electrochim. Acta 318, 161 (2019). https://doi.org/10.1016/j.electacta.2019.05.090

    Article  CAS  Google Scholar 

  16. Q. Wu, X. Zhou, J. Xu, F. Cao, C. Li, J. Energy Chem. 38, 94 (2019)

    Article  Google Scholar 

  17. S. Zheng, P. Han, Z. Han, H. Zhang, Z. Tang, J. Yang, Sci. Rep. 4, 1 (2014)

    Google Scholar 

  18. J. Fanous, M. Wegner, J. Grimminger, A. Andresen, M.R. Buchmeiser, Chem. Mater. 23, 5024 (2011). https://doi.org/10.1021/cm202467u

    Article  CAS  Google Scholar 

  19. K. Chen, Z. Sun, R. Fang, Y. Shi, H.M. Cheng, F. Li, Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201707592

    Article  Google Scholar 

  20. J. He, Y. Chen, A. Manthiram, Adv. Energy Mater (2019). https://doi.org/10.1002/aenm.201900584

    Article  Google Scholar 

  21. Y. Zheng, S. Zheng, H. Xue, H. Pang, J. Mater. Chem. A 7, 3469 (2019)

    Article  CAS  Google Scholar 

  22. X. Ji, K.T. Lee, L.F. Nazar, Nat. Mater. 8, 500 (2009). https://doi.org/10.1038/nmat2460

    Article  CAS  Google Scholar 

  23. L. Lu, F. Pei, T. Abeln, Y. Pei, Carbon 161, 342 (2020). https://doi.org/10.1016/j.carbon.2020.01.071

    Article  CAS  Google Scholar 

  24. Y. Dai, W. Zheng, X. Li et al., ACS Appl. Mater. Interf. 13, 2521 (2021). https://doi.org/10.1021/acsami.0c17454

    Article  CAS  Google Scholar 

  25. J. Ren, Z. Song, X. Zhou et al., ChemElectroChem 6, 3410 (2019). https://doi.org/10.1002/celc.201900744

    Article  CAS  Google Scholar 

  26. J. Shi, Q. Kang, Y. Mi, Q. **ao, Electrochim. Acta. (2019). https://doi.org/10.1016/j.electacta.2019.134849

    Article  Google Scholar 

  27. Z. Fang, Y. Luo, H. Wu et al., Carbon 166, 183 (2020). https://doi.org/10.1016/j.carbon.2020.05.047

    Article  CAS  Google Scholar 

  28. Z. Li, X. Li, Y. Liao, X. Li, W. Li, J. Power Sources 334, 23 (2016). https://doi.org/10.1016/j.jpowsour.2016.10.003

    Article  CAS  Google Scholar 

  29. L. Ma, X. Li, W. Gao et al., New J. Chem. 44, 1001 (2020). https://doi.org/10.1039/c9nj05405g

    Article  CAS  Google Scholar 

  30. T. Dhawa, S. Chattopadhyay, G. De, S. Mahanty, Mater. Chem. Phys. 225, 309 (2019). https://doi.org/10.1016/j.matchemphys.2018.12.101

    Article  CAS  Google Scholar 

  31. S. Ma, L. Wang, Y. Wang et al., Carbon 143, 878 (2019). https://doi.org/10.1016/j.carbon.2018.11.086

    Article  CAS  Google Scholar 

  32. C. Chai, H. Tan, X. Fan, K. Huang, J. Alloy. Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153144

    Article  Google Scholar 

  33. N. Ding, Y. Lum, S. Chen et al., J. Mater. Chem. A 3, 1853 (2015). https://doi.org/10.1039/c4ta05659k

    Article  CAS  Google Scholar 

  34. H. Yang, X. Zhang, J. Guo et al., J. Alloy. Compd. 768, 495 (2018). https://doi.org/10.1016/j.jallcom.2018.07.226

    Article  CAS  Google Scholar 

  35. X. Zhou, J. Tian, Q. Wu, J. Hu, C. Li, Energy Storage Mater. 24, 644 (2020). https://doi.org/10.1016/j.ensm.2019.06.009

    Article  Google Scholar 

  36. B. Zhang, X. Qin, G.R. Li, X.P. Gao, Energy Environ. Sci. 3, 1531 (2010). https://doi.org/10.1039/c002639e

    Article  CAS  Google Scholar 

  37. J. Zou, Y. Niu, W. Tu et al., J. Electrochem. Soc. 166, A3464 (2019)

    Article  CAS  Google Scholar 

  38. Z. Chen, S. Cheng, Y. Chen, X. **a, H. Liu, Mater. Lett. 263, 127283 (2020)

    Article  CAS  Google Scholar 

  39. W. Yang, W. Yang, A.L. Song, G. Sun, G.J. Shao, Nanoscale 10, 816 (2018). https://doi.org/10.1039/c7nr06805k

    Article  CAS  Google Scholar 

  40. Z. Zhao, J. Wang, M. Cheng et al., Electrochim. Acta (2020). https://doi.org/10.1016/j.electacta.2020.136231

    Article  Google Scholar 

  41. H. Chen, W.D. Dong, F.J. **a et al., Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.122746

    Article  Google Scholar 

  42. F. Pei, T. An, J. Zang et al., Adv. Energy Mater. 6, 1502539 (2016)

    Article  Google Scholar 

  43. J.S. Yeon, S. Yun, J.M. Park, H.S. Park, ACS Nano 13, 5163 (2019). https://doi.org/10.1021/acsnano.8b08822

    Article  CAS  Google Scholar 

  44. Q. Dong, T. Wang, R. Gan, N. Fu, C. Li, Z. Wei, ACS Appl. Mater. Interf. 12, 20596 (2020)

    Article  CAS  Google Scholar 

  45. C.S. Cho, J.Y. Chang, C.C. Li, J. Power Sources (2020). https://doi.org/10.1016/j.jpowsour.2020.227818

    Article  Google Scholar 

  46. Y. Wang, M. Li, L. Xu et al., Chem. Eng. J. 358, 962 (2019). https://doi.org/10.1016/j.cej.2018.10.086

    Article  CAS  Google Scholar 

  47. R. Wang, J. Yang, X. Chen et al., Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.201903550

    Article  Google Scholar 

  48. L. Wang, S. Liu, J. Hu et al., Nano Res. 14, 1355 (2021). https://doi.org/10.1007/s12274-020-3181-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Natural Science Foundation of Guangdong Province (2022A1515011715), the Science and Technology Planning Project of Guangzhou (202104010449) and the National Natural Science Foundation of China (21975056 and 52002079).

Author information

Authors and Affiliations

Authors

Contributions

PH and CL generated the research concept, designed the experimental method, analyzed the experimental data, and wrote the paper- Original Draft; while XJ assisted with experimental data and provided technical support and improvement suggestions; CS and ZH provided research supervision and guidance; YW accessed research funding, gave the writing review and editing. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jun **ong or Wei Yang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 116 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, H., Cao, L., **ong, J. et al. Preparation and electrochemical properties of hollow carbon spheres/sulfur co-doped with N and O for high-performance lithium-sulfur batteries. J Porous Mater 30, 277–288 (2023). https://doi.org/10.1007/s10934-022-01337-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01337-8

Keywords

Navigation