Log in

Effects of Sodium Dodecyl Sulfate on the Enzyme Catalysis and Conformation of a Recombinant γ-Glutamyltranspeptidase from Bacillus licheniformis

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The study of interactions between proteins and surfactants is of relevance in a diverse range of applications including food, enzymatic detergent formulation, and drug delivery. In spite of sodium dodecyl sulfate (SDS)-induced unfolding has been studied in detail at the protein level, deciphering the conformation-activity relationship of a recombinant γ-glutamyltranspeptidase (BlrGGT) from Bacillus licheniformis remains important to understand how the transpeptidase activity is related to its conformation. In this study, we examined the enzyme catalysis and conformational transition of BlrGGT in the presence of SDS. Enzymatic assays showed that the transpeptidase activity of BlrGGT was greatly affected by SDS in a concentration-dependent manner with approximately 90% inactivation at 6 mM. Native polyacrylamide gel electrophoresis of SDS-treated samples clearly revealed that the heterodimeric enzyme was apparently dissociated into two different subunits at concentrations above 2 mM. The study of enzyme kinetics showed that SDS can act as a mixed-type inhibitor to reduce the catalytic efficiency of BlrGGT. Moreover, the t1/2 value of the enzyme at 55 °C was greatly reduced from 495.1 min to 7.4 min in the presence of 1 mM SDS. The I3/I1 ratio of pyrene excimer fluorescence emission changed around 3.7 mM SDS in the absence of BlrGGT and the inflection point of enzyme samples was reduced to less than 2.7 mM. The Far-UV CD spectrum of the native enzyme had two negative peaks at 208 and 222 nm, respectively; however, both negative peaks increased in magnitude with increasing SDS concentration and reached maximal values at above 4.0 mM. The intrinsic fluorescence spectra of tryptophan further demonstrated that the SDS-induced enzyme conformational transition occurred at approximately 5.1 mM. Tween 20 significantly suppressed the interaction of BlrGGT with SDS by forming mixed micelles at a molar ratio of 1.0. Taken together, this study definitely promotes our better understanding of the relationship between the conformation and catalysis of BlrGGT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed in this study are available from the corresponding author on reasonable request.

References

  1. La Mesa C (2005) Polymer-surfactant and protein-surfactant interactions. J Colloid Interface Sci 286:148–157

    Article  PubMed  Google Scholar 

  2. Otzen DE (2011) Protein-surfactant interactions: a tale of many states. Biochim Biophys Acta 1814:562–591

    Article  CAS  PubMed  Google Scholar 

  3. Otzen DE (2002) Protein unfolding in detergents: effects of micelle structure, ionic strength, pH, and temperature. Biophys J 83:2219–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Otzen DE (2015) Proteins in a brave new surfactant world. Curr Opin Colloid Interface Sci 20:161–169

    Article  CAS  Google Scholar 

  5. Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412

    Article  CAS  PubMed  Google Scholar 

  6. Kelly D, McClements DJ (2003) Interactions of bovine serum albumin with ionic surfactants in aqueous solutions. Food Hydrocoll 17:73–85

    Article  Google Scholar 

  7. Gelamo EL, Itri R, Alonso A, da Silva JV, Tabak M (2004) Small-angle X-ray scattering and electron paramagnetic resonance study of the interaction of bovine serum albumin with ionic surfactants. J Colloid Interface Sci 277:471–482

    Article  CAS  PubMed  Google Scholar 

  8. Chakraborty T, Chakraborty I, Moulik SP, Ghosh S (2009) Physiochemical and conformational studies on the BSA-surfactant interaction in aqueous medium. Langmuir 25:3062–3074

    Article  CAS  PubMed  Google Scholar 

  9. Hansen JH, Petersen SV, Andersen KK, Enghild JJ, Damhus T, Otzen DE (2009) Stable intermediates determine proteins’ primary unfolding sites in the presence of surfactants. Biopolymers 91:221–231

    Article  CAS  PubMed  Google Scholar 

  10. Mattice WL, Riser JM, Clark DS (1976) Conformational properties of the complexes formed by proteins and sodium dodecyl sulfate. Biochemistry 15:4264–4272

    Article  CAS  PubMed  Google Scholar 

  11. Otzen DE, Oliveberg M (2002) Burst-phase expansion of native protein prior to global unfolding in SDS. J Mol Biol 315:1231–1240

    Article  CAS  PubMed  Google Scholar 

  12. Anand U, Ray S, Ghosh S, Banerjee R, Mukherjee S (2015) Structural aspects of a protein-surfactant assembly: native and reduced states of human serum albumin. Protein J 34:147–157

    Article  CAS  PubMed  Google Scholar 

  13. Lad MD, Ledger VM, Briggs B, Green R, Frazier RA (2003) Analysis of the SDS-lysozyme binding isotherm. Langmuir 19:5098–5103

    Article  CAS  Google Scholar 

  14. Otzen DE, Sehgal P, Westh P (2009) α-Lactalbumin is unfolded by all classes of surfactants but by different mechanisms. J Colloid Interface Sci 329:273–283

    Article  CAS  PubMed  Google Scholar 

  15. Krainer G, Hartmann A, Bogatyr V, Nielsen J, Schlierf M, Otzen DE (2020) SDS-induced multi-stage unfolding of a small globular protein through different denatured states revealed by single-molecule fluorescence. Chem Sci 11:9141–9153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mallamace F, Corsaro C, Mallamace D, Vasi S, Vasi C, Baglioni P, Buldyrev SV, Chen SH, Stanley HE (2016) Energy landscape in protein folding and unfolding. Proc Natl Acad Sci USA 13:3159–3163

    Article  Google Scholar 

  17. Narayanan J, Rasheed ASA, Bellare JR (2008) A small-angle X-ray scattering study of the structure of lysozyme-sodium dodecyl sulfate complexes. J Colloid Interface Sci 328:67–72

    Article  CAS  PubMed  Google Scholar 

  18. Sun Y, Filho PL, Bozelli JC Jr, Carvalho J, Schreier S, Oliveira CL (2015) Unfolding and folding pathway of lysozyme induced by sodium dodecyl sulfate. Soft Matter 11:7769–7777

    Article  CAS  PubMed  Google Scholar 

  19. Mortensen HG, Madsen JK, Andersen KK, Vosegaard T, Deen GR, Otzen DE, Pedsen JS (2017) Myoglobin and α-lactalbumin form smaller complexes with the biosurfactant rhamnolipid than with SDS. Biophys J 113:2621–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Andersen KK, Oliveira CL, Larsen KL, Poulsen FM, Callisen TH, Westh P, Pedsen JS, Otzen DE (2009) The role of decorated SDS micelles in sub-CMC protein denaturation and association. J Mol Biol 391:207–226

    Article  CAS  PubMed  Google Scholar 

  21. Keillor JW, Castonguay R, Lherbet C (2005) γ-Glutamyl transpeptidase substrate specificity and catalytic mechanism. Methods Enzymol 401:449–467

    Article  CAS  PubMed  Google Scholar 

  22. Saini M, Kashyap A, Bindal S, Saini K, Gupta R (2021) Bacterial γ-glutamyl transpeptidase, an emerging biocatalyst: insights into structure-function relationship and its biotechnological applications. Front Microbiol 12:641251

    Article  PubMed  PubMed Central  Google Scholar 

  23. Suzuki H, Yamada C, Kato K (2007) γ-Glutamyl compounds and their enzymatic production using bacterial γ-glutamyltranspeptidase. Amino Acids 32:333–340

    Article  CAS  PubMed  Google Scholar 

  24. Castellano I, Merlino A (2012) γ-Glutamyltranspeptidases: sequence, structure, biochemical properties, and biotechnological applications. Cell Mol Life Sci 69:3381–3394

    Article  CAS  PubMed  Google Scholar 

  25. Chen Z, Wang Z, Yuan H, He N (2021) From tea leaves to factories: a review of research progress in L-theanine biosynthesis and production. J Agric Food Chem 69:1187–1196

    Article  CAS  PubMed  Google Scholar 

  26. Speranza G, Morelli CF (2012) γ-Glutamyl transpeptidase-catalyzed synthesis of naturally occurring flavor enhancers. J Mol Catal B Enzym 84:65–71

    Article  CAS  Google Scholar 

  27. Yang J, Bai W, Zeng X, Cui C (2019) γ-Glutamyl peptides: the food source, enzymatic synthesis, kokumi-active and the potential functional properties—a review. Trends Food Sci Technol 91:339–346

    Article  CAS  Google Scholar 

  28. Pica A, Chi MC, Chen YY, d’Ischia M, Lin LL, Merlino A (2016) The maturation mechanism of γ-glutamyl transpeptidases: insights from the crystal structure of a precursor mimic of the enzyme from Bacillus licheniformis and from site-directed mutagenesis studies. Biochim Biophys Acta 1864:195–203

    Article  CAS  PubMed  Google Scholar 

  29. Lin LL, Chou PR, YHua YW, Hsu WH, (2006) Overexpression, one-step purification, and biochemical characterization of a recombinant γ-glutamyltranspeptidase from Bacillus licheniformis. Appl Microbiol Biotechnol 73:103–112

    Article  CAS  PubMed  Google Scholar 

  30. Chen YY, Lo HF, Wang TF, Lin MG, Lin LL, Chi MC (2015) Enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine, a naturally occurring organosulfur compound from garlic, by Bacillus licheniformis γ-glutamyltranspeptidase. Enzyme Microb Technol 75–76:18–24

    PubMed  Google Scholar 

  31. Chi MC, Lo HF, Lin MG, Chen YY, Lin LL, Wang TF (2017) Application of Bacillus licheniformis γ-glutamyltranspeptidase to the biocatalytic synthesis of γ-glutamyl-phenylalanine. Biocatal Agric Biotechnol 10:278–284

    Article  CAS  Google Scholar 

  32. Lee YC, Chi MC, Lin MG, Chen YY, Lin LL, Wang TF (2018) Biocatalytic synthesis of γ-glutamyl-L-leucine, a kokumi-imparting dipeptide, by Bacillus licheniformis γ-glutamyltranspeptidase. Food Biotechnol 32:130–147

    Article  CAS  Google Scholar 

  33. Chi MC, Lin MG, Huang YF, Chen YY, Wang TF, L.L. Lin LL, (2019) Enzymatic synthesis of L-theanine from L-glutamine and ethylamine by Bacillus licheniformis γ-glutamyltranspeptidase and its mutants specialized in transpeptidase activity. Biocatal Agric Biotechnol 22:101393

    Article  Google Scholar 

  34. Madsen JK, Pihl R, Møller AH, Madsen AT, Otzen DE, Andersen KK (2015) The anionic biosurfactant rhamnolipid does not denature industrial enzymes. Front Microbiol 6:292

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hou H, He H, Wang Y (2020) Effects of SDS on the activity and conformation of protein tyrosine phosphatase from Thermus thermophiles HB27. Sci Rep 10:3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chi MC, Liao TY, Lin MG, Lin LL, Wang TF (2021) Catalytic performance of a recombinant organophosphate-hydrolyzing phosphotriesterase from Brevundimonas diminuta in the presence of surfactants. Catalysts 11:597

    Article  CAS  Google Scholar 

  37. Hu HY, Yang JC, Chen JH, Chi MC, Lin LL (2012) Enzymatic characterization of Bacillus licheniformis γ-glutamyltranspeptidase fused with N-terminally truncated forms of Bacillus sp. TS-23 α-amylase. Enzyme Microb Technol 51:86–94

    Article  CAS  PubMed  Google Scholar 

  38. Lin LL, Lu BY, Huang YF, Chi MC, Lin MG, Wang TF (2022) Activation and thermal stabilization of a recombinant γ-glutamyltranspeptidase from Bacillus licheniformis ATCC 27811 by monovalent cations. Appl Microbiol Biotechnol 106:1991–2006

    Article  CAS  PubMed  Google Scholar 

  39. Patadiya N, Panchal N, Vagheta V (2021) A review on enzyme inhibitors. Int Res J Pharm 12:60–66

    Article  CAS  Google Scholar 

  40. Mu H, Zhou SM, **a Y, Zou H, Meng F, Yan YB (2009) Inactivation and unfolding of the hyperthermophilic inorganic pyrophosphatase from Thermus thermophiles by sodium dodecyl sulfate. Int J Mol Sci 10:2849–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gouzi H, Depagne C, Coradin T (2011) Kinetics and thermodynamics of the thermal inactivation of polyphenol oxidase in an aqueous extract from Agaricus bisporus. J Agric Food Chem 60:500–506

    Article  PubMed  Google Scholar 

  42. Yoshino M, Murakami K (2009) A graphical method for determining inhibition constants. J Enzyme Inhib Med Chem 24:1288–1290

    Article  CAS  PubMed  Google Scholar 

  43. Chaudhuri TK, Arai M, Terada TP, Ikura T, Kuwajima K (2000) Equilibrium and kinetic studies on folding of the authentic and recombinant forms of human α-lactalbumin by circular dichroism spectroscopy. Biochemistry 39:15643–15651

    Article  CAS  PubMed  Google Scholar 

  44. Royer CA, Mann CJ, Matthews CR (1993) Resolution of the fluorescence equilibrium unfolding profile of trp aporepressor using single tryptophan mutants. Protein Sci 2:1844–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brains G, Patel AB, Narayanaswami V (2011) Pyrene: a probe to study protein conformation and conformational changes. Molecules 16:7907–7935

    Google Scholar 

  46. Piñeiro L, Novo M, Al-Soufi W (2015) Fluorescence emission of pyrene in surfactant solutions. Adv Colloid Interface Sci 215:1–12

    Article  PubMed  Google Scholar 

  47. Kalyanasundaram K, Thomas JK (1977) Solvent-dependent fluorescence of pyrene-3-carboxaldehyde and its applications in the estimation of polarity at micelle-water interfaces. J Phys Chem 81:2176–2180

    Article  CAS  Google Scholar 

  48. Yamamoto S, Hasegawa K, Yamaguchi I, Tsutsumi S, Kardos J, Goto Y, Gejyo F, Naiki H (2004) Low concentrations of sodium dodecyl sulfate induce the extension of beta 2-microglobulin-related amyloid fibrils at a neutral pH. Biochemistry 43:11075–11082

    Article  CAS  PubMed  Google Scholar 

  49. Ahmad MF, Ramakrishna T, Raman B, Rao CM (2006) Fibrillogenic and non-fibrillogenic ensembles of SDS-bound human α-synuclein. J Mol Biol 364:1061–1072

    Article  CAS  PubMed  Google Scholar 

  50. Schneider GF, Shaw BF, Lee A, Carillho E, G.M. Whitesides GM, (2008) Pathway for unfolding of ubiquitin in sodium dodecyl sulfate, studied by capillary electrophoresis. J Am Chem Soc 130:17384–17393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chi MC, Chen YY, Lo HF, Lin LL (2012) Experimental evidence for the involvement of amino acid residue Glu398 in the autocatalytic processing of Bacillus licheniformis γ-glutamyltranspeptidase. FEBS Open Bio 2:298–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chi MC, Lo YH, Chen YY, Lin LL, Merlino A (2014) γ-Glutamyl transpeptidase architecture: effect of extra sequence deletion on autoprocessing, structure and stability of the protein from Bacillus licheniformis. Biochim Biophys Acta 1844:2290–2297

    Article  CAS  PubMed  Google Scholar 

  53. Jung JM, Savin G, Pouzot M, Schmitt C, R. Mezzenga R, (2008) Structure of heat-induced β-lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate. Biomacromol 9:2477–2486

    Article  CAS  Google Scholar 

  54. Lin LL, Y.Y. Chen YY, Chi MC, Merlino A, (2014) Low resolution X-ray structure of γ-glutamyltranspeptidase from Bacillus licheniformi: opened active site and a cluster of acid residues potentially involved in the recognition of a metal ion. Biochim Biophys Acta 1844:1523–1529

    Article  CAS  PubMed  Google Scholar 

  55. Butterworth PJ (1972) The use of Dixon plots to study enzyme inhibition. Biochim Biophys Acta 289:251–253

    Article  CAS  PubMed  Google Scholar 

  56. Yang JC, Liang WC, Chen YY, Chi MC, Lo HF, Chen HL, Lin LL (2011) Biophysical characterization of Bacillus licheniformis and Escherichia coli γ-glutamyltranspeptidases: a comparative analysis. Int J Biol Macromol 48:414–422

    Article  CAS  PubMed  Google Scholar 

  57. Prakash V, Nandi PK, Jirgensons B (1980) Effect of sodium dodecyl sulfate, acid, alkali, urea and guanidine hydrochloride on the circular dichroism of alpha-globulin of Sesamum indicum L. Int J Pep Protein Res 15:305–313

    Article  CAS  Google Scholar 

  58. Jones MN, Manley P, Wilkinson A (1982) The dissociation of glucose oxidase by sodium n-dodecyl sulphate. Biochem J 203:285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Boye JI, Ma CY, Ismail A (2004) Thermal stability of β-lactoglobulins A and B: effect of SDS, urea, cysteine and N-ethylmaleimide. J Dairy Res 71:207–215

    Article  CAS  PubMed  Google Scholar 

  60. Miksovska J, Yom J, Diamond B, Larsen RW (2006) Spectroscopic and photothermal study of myoglobin conformational changes in the presence of sodium dodecyl sulfate. Biomacromol 7:476–482

    Article  CAS  Google Scholar 

  61. Carvalho JWP, Alves FR, Batista T, Carvalho FAO, Santiago P, Tabak M (2013) Sodium dodecyl sulfate (SDS) effect on the thermal stability of oxy-HbGp: dynamic kight scattering (DLS) and small angle X-ray scattering (SAXS) studies. Colloids Surf B Biointerfaces 111:561–570

    Article  CAS  PubMed  Google Scholar 

  62. Bhowmick R, Jagannadham MV (2003) SDS-induced conformational transitions of ervatamin B: evidence of greater stability of α-rich domain compared to β-rich domain of the SDS derived state. Colloids Surf B Biointerfaces 32:223–234

    Article  CAS  Google Scholar 

  63. Misra PP, Kishore N (2011) Biophysical analysis of partially folded state of α-lactalbumin in the presence of cationic and anionic surfactants. J Colloids Interface Sci 354:234–247

    Article  CAS  Google Scholar 

  64. Hansted JG, Wejse PL, Berteisen H, Otzen DE (2011) Effect of protein–surfactant interactions on aggregation of β-lactoglobulin. Biochim Biophys Acta 1814:713–723

    Article  CAS  PubMed  Google Scholar 

  65. Tsou CL (1993) Conformational flexibility of enzyme active sites. Science 262:380–381

    Article  CAS  PubMed  Google Scholar 

  66. Semisotnov GV, Rodionova NA, Razgulyaev OI, Uversky VN, Gripas AF, Gilmanshin RI (1991) Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers 31:119–128

    Article  CAS  PubMed  Google Scholar 

  67. Lau FW, Bowie JU (1997) A method for assessing the stability of a membrane protein. Biochemistry 36:5884–5892

    Article  CAS  PubMed  Google Scholar 

  68. Faham S, Yang D, Bare E, Yohannan S, Whitelegge JP, Bowie JU (2004) Side-chain contributions to membrane protein structure and stability. J Mol Biol 330:641–649

    Google Scholar 

  69. Sehgal P, Otzen DE (2006) Thermodynamics of unfolding of an integral membrane in mixed micelles. Protein Sci 15:890–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Otzen DE (2003) Folding of DsbB in mixed micelles: a kinetic analysis of the stability of a bacterial membrane protein. J Mol Biol 330:641–649

    Article  CAS  PubMed  Google Scholar 

  71. Anand U, Mukherjee S (2013) Reversibility in protein folding: effect of β-cyclodextrin on bovine serum albumin unfolded by sodium dodecyl sulfate. Phys Chem Chem Phys 15:9375–9383

    Article  CAS  PubMed  Google Scholar 

  72. Kaspersen JD, Søndergaard A, Madsen DJ, Otzen DE, Pedersen JS (2017) Refolding of SDS-unfolded proteins by nonionic surfactants. Biophys J 112:1609–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gull N, Khan JM, Rukhsana KRH (2017) Spectroscopic studies on the gemini surfactant mediated refolding of human serum albumin. Int J Biol Macromol 102:331–335

    Article  CAS  PubMed  Google Scholar 

  74. Saha D, Ray D, Kohlbrecher J, Aswal VK (2018) Unfolding and refolding of protein by a combination of ionic and nonionic surfactants. ACS Omega 3:8260–8270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the research grants (MOST 109–2313-B-415–006; MOST 109–2320-B-415–003) from the Ministry of Science and Technology of Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

M-CC: Investigation, Data curation, Writing – original draft. B-YL: Investigation, Data curation, Methodology. Y-FH: Data curation, Methodology. S-WW: Validation. M-GL: Writing – review & editing. T-FW: Supervision, Project administration, Conceptualization, Writing – original draft, review, and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Tzu-Fan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, MC., Lu, BY., Huang, YF. et al. Effects of Sodium Dodecyl Sulfate on the Enzyme Catalysis and Conformation of a Recombinant γ-Glutamyltranspeptidase from Bacillus licheniformis. Protein J 42, 64–77 (2023). https://doi.org/10.1007/s10930-023-10095-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10095-8

Keywords

Navigation