Log in

Improved Protein Real-Valued Distance Prediction Using Deep Residual Dense Network (DRDN)

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Three-dimensional protein structure prediction is one of the major challenges in bioinformatics. According to recent research findings, real-valued distance prediction plays a vital role in determining the unique three-dimensional protein structure. This paper proposes a novel methodology involving a deep residual dense network (DRDN) for predicting protein real-valued distance. The features extracted from the given query protein sequence and its corresponding homologous sequences are used for training the model. Multi-aligned homologous sequences for each query protein sequence are retrieved from five different databases using DeepMSA, HHblits, and HITS_PR_HHblits methods. The proposed method yielded outcomes of 3.89, 0.23, 0.45, and 0.63, respectively, corresponding to the evaluation metrics such as Absolute Error, Relative Error, High-accuracy Pairwise Distance Test (PDA), and Pairwise Distance Test (PDT). Further, the contact map is computed based on CASP criteria by converting the predicted real-valued distance, and it is evaluated using the precision metric. It is observed that precision of long-range top L/5 contact prediction on the CASP13 dataset by the proposed method, RaptorX, Zhang, trRosetta, **boXu & **Lu, and Deepdist are 0.834, 0.657, 0.70, 0.785, 0.786, and 0.812, respectively. Also, Top-L/5 contact prediction on the CASP14 dataset evaluated using average precision resulted in 0.847, 0.707, 0.752, 0.783, 0.792, 0.817, and 0.825 respectively, corresponding to the proposed method, Zhang, RaptorX, trRosetta, Deepdist, **boXu & **Lu, and Alphafold2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Maveyraud L, Mourey L (2020) Protein X-ray crystallography and drug discovery. Molecules 25(5):1030

    Article  CAS  PubMed Central  Google Scholar 

  2. Callaway E (2015) The revolution will not be crystallized: a new method sweeps through structural biology. Nat News 525(7568):172

    Article  CAS  Google Scholar 

  3. Morelli X et al (2000) Heteronuclear NMR and soft docking: an experimental approach for a structural model of the cytochrome c 553—ferredoxin complex. Biochemistry 39(10):2530–2537

    Article  CAS  PubMed  Google Scholar 

  4. Lesk AM (1997) CASP2: report on ab initio predictions. Proteins 29(S1):151–166

    Article  Google Scholar 

  5. Monastyrskyy B et al (2014) Evaluation of residue-residue contact prediction in CASP10. Proteins 82:138–153

    Article  CAS  PubMed  Google Scholar 

  6. Monastyrskyy B et al (2016) New encouraging developments in contact prediction: assessment of the CASP 11 results. Proteins 84:131–144

    Article  PubMed  CAS  Google Scholar 

  7. Schaarschmidt J et al (2018) Assessment of contact predictions in CASP12: co-evolution and deep learning coming of age. Proteins 86:51–66

    Article  CAS  PubMed  Google Scholar 

  8. Shrestha R et al (2019) Assessing the accuracy of contact predictions in CASP13. Proteins 87(12):1058–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seemayer S, Gruber M, Söding J (2014) CCMpred—fast and precise prediction of protein residue-residue contacts from correlated mutations. Bioinformatics 30(21):3128–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tegge AN et al (2009) NNcon: improved protein contact map prediction using 2D-recursive neural networks. Nucl Acids Res 37:W515–W518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Adhikari B, Hou J, Cheng J (2018) DNCON2: improved protein contact prediction using two-level deep convolutional neural networks. Bioinformatics 34(9):1466–1472

    Article  CAS  PubMed  Google Scholar 

  12. Xu J (2019) Distance-based protein folding powered by deep learning. Proc Natl Acad Sci USA 116(34):16856–16865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He B et al (2017) NeBcon: protein contact map prediction using neural network training coupled with naïve Bayes classifiers. Bioinformatics 33(15):2296–2306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Senior AW et al (2020) Improved protein structure prediction using potentials from deep learning. Nature 577(7792):706–710

    Article  CAS  PubMed  Google Scholar 

  15. Geethu S, Vimina ER (2021) Three-dimensional protein structure prediction–exploratory review. Advances in electrical and computer technologies: select proceedings of ICAECT 2020. Springer, Singapore

  16. Kandathil SM, Greener JG, Jones DT (2019) Prediction of interresidue contacts with DeepMetaPSICOV in CASP13. Proteins 87(12):1092–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Senior AW et al (2019) Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13). Proteins 87(12):1141–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adhikari B (2020) A fully open-source framework for deep learning protein real-valued distances. Sci Rep 10(1):1–10

    Article  CAS  Google Scholar 

  19. Jumper J et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li J, **bo Xu (2021) Study of real-valued distance prediction for protein structure prediction with deep learning. Bioinformatics 37(19):3197–3203

    Article  CAS  PubMed Central  Google Scholar 

  21. Goodsell DS et al (2020) RCSB Protein Data Bank: enabling biomedical research and drug discovery. Protein Sci 29(1):52–65

    Article  CAS  PubMed  Google Scholar 

  22. Stern J et al (2021) Evaluation of deep neural network ProSPr for accurate protein distance predictions on CASP14 Targets. Int J Mol Sci 22(23):12835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637

    Article  CAS  PubMed  Google Scholar 

  24. Cheng H et al (2014) ECOD: an evolutionary classification of protein domains. PLoS Comput Biol 10(12):e1003926

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cheng H, Liao Y, Schaeffer RD, Grishin NV (2015) Manual classification strategies in the ECOD database. Proteins 83(7):1238–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang J (1994) A model of competitive stock trading volume. J Polit Econ 102(1):127–168

    Article  Google Scholar 

  27. Uguzzoni G et al (2017) Large-scale identification of co-evolution signals across homo-oligomeric protein interfaces by direct coupling analysis. Proc Natl Acad Sci 114(13):E2662–E2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Steinegger M, Söding J (2018) Clustering huge protein sequence sets in linear time. Nat Commun 9(1):1–8

    Article  CAS  Google Scholar 

  29. Murzin AG et al (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540

    Article  CAS  PubMed  Google Scholar 

  30. Benson DA et al (2018) GenBank. Nucl Acids Res 46(D1):D41–D47

    Article  CAS  PubMed  Google Scholar 

  31. Apweiler R et al (2017) UniProt: the universal protein knowledgebase. Nucl Acids Res 45:D158–D169

    Article  CAS  Google Scholar 

  32. Suzek BE et al (2015) UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31(6):926–932

    Article  CAS  PubMed  Google Scholar 

  33. Mirdita M et al (2017) Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucl Acids Res 45(D1):D170–D176

    Article  CAS  PubMed  Google Scholar 

  34. Mirdita M, Steinegger M, Söding J (2019) MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 35(16):2856–2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Steinegger M, Mirdita M, Söding J (2019) Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold. Nat Methods 16(7):603–606

    Article  CAS  PubMed  Google Scholar 

  36. Mirdita M et al (2021) Fast and sensitive taxonomic assignment to metagenomic contigs. Bioinformatics 37(18):3029–3031

    Article  CAS  PubMed Central  Google Scholar 

  37. Geethu S, Vimina ER (2021) Improved 3-D Protein Structure Predictions using Deep ResNet Model. Protein J 40(5):669–681

    Article  CAS  PubMed  Google Scholar 

  38. Zhang C et al (2020) DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins. Bioinformatics 36(7):2105–2112

    Article  CAS  PubMed  Google Scholar 

  39. Steinegger M et al (2019) HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinform 20(1):1–15

    Article  CAS  Google Scholar 

  40. Liu B, Jiang S, Zou Q (2020) HITS-PR-HHblits: protein remote homology detection by combining PageRank and hyperlink-induced topic search. Brief Bioinform 21(1):298–308

    CAS  Google Scholar 

  41. Kaján L et al (2014) FreeContact: fast and free software for protein contact prediction from residue co-evolution. BMC Bioinform 15(1):1–6

    Article  CAS  Google Scholar 

  42. Li Y et al (2019) Ensembling multiple raw co-evolutionary features with deep residual neural networks for contact-map prediction in CASP13. Proteins 87(12):1082–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li Z et al (2020) Protein contact map prediction based on ResNet and DenseNet. BioMed Res Int. https://doi.org/10.1155/2020/7584968

    Article  PubMed  PubMed Central  Google Scholar 

  44. An J-Y et al (2019) An efficient feature extraction technique based on local coding PSSM and multifeatures fusion for predicting protein-protein interactions. Evol Bioinform 15:1176934319879920

    Article  Google Scholar 

  45. Miyazawa S, Jernigan RL (1985) Estimation of effective interresidue contact enerNextgies from protein crystal structures: quasi-chemical approximation. Macromolecules 18(3):534–552

    Article  CAS  Google Scholar 

  46. Jones DT, Kandathil SM (2018) High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Bioinformatics 34(19):3308–3315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pakhrin SC et al (2021) Deep learning-based advances in protein structure prediction. Int J Mol Sci 22(11):5553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jones DT et al (2015) MetaPSICOV: combining co-evolution methods for accurate prediction of contacts and long-range hydrogen bonding in proteins. Bioinformatics 31(7):999–1006

    Article  CAS  PubMed  Google Scholar 

  49. Wei W et al (2019) An advanced deep residual dense network (DRDN) approach for image super-resolution. Int J Comput Intell Syst 12(2):1592–1601

    Article  Google Scholar 

  50. Wu T et al (2021) DeepDist: real-value inter-residue distance prediction with deep residual convolutional network. BMC Bioinform 22(1):1–17

    CAS  Google Scholar 

  51. Zhang Y et al (2018) Residual dense network for image super-resolution. In: Proceedings of the IEEE conference on computer vision and pattern recognition

  52. Du Z et al (2021) The trRosetta server for fast and accurate protein structure prediction. Nat Protoc 16(12):5634–5651

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Geethu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geethu, S., Vimina, E.R. Improved Protein Real-Valued Distance Prediction Using Deep Residual Dense Network (DRDN). Protein J 41, 468–476 (2022). https://doi.org/10.1007/s10930-022-10067-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-022-10067-4

Keywords

Navigation