Log in

Cyclic Adsorption and Desorption Characteristics of Citric Acid-chitosan Variant Resins for Pb, Fe, and Zn Removal from Simulated Mining and Agricultural Wastewater System

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Targeted sorbents for the real-world adsorptive separation of heavy metals shall exhibit high sorption capacity, reusability, and cost-effectiveness. In this study, a novel composite sorbent has been synthesized for the concurrent mitigation of iron, lead, and zinc metal ions from synthetic wastewater systems. For this purpose, chitosan with alternate molecular weight (low, medium, and high) and with hydroxyl and amine functional groups was employed as a substrate. The successful anchoring of the organic compound citric acid was achieved with the glutaraldehyde crosslinker. The medium molecular weight chitosan-citric acid (medium Cit-CS) has been evaluated to achieve optimal metal uptake of 243.90, 3.93, and 144.93 mg g−1 for zinc, lead, and iron from intricate Zn dominant adsorbate system. Accordingly, it was ascertained that other alternative ions in the adsorbate system significantly alter the sorption patterns. The validation of the chemisorption process was effectively established through the consistency observed in the pattern of adsorption as well as the successful modeling via the pseudo-second-order (PSO) approach. Following this, the desorption of metal ions was effective with simple basic and acidic eluents and for a three-cycle-based simultaneous regeneration. In summary, the findings demonstrate the promising performance of the sorbent for metal ions eradication from intricate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data is provided within the manuscript or supplementary information files.

References

  1. Sheikh MC, Hasan MM, Hasan MN, Salman MS, Kubra KT, Awual ME, Waliullah RM, Rasee AI, Rehan AI, Hossain MS, Marwani HM, Islam A, Khaleque MA, Awual MR (2023) Toxic cadmium(II) monitoring and removal from aqueous solution using ligand-based facial composite adsorbent. J Mol Liq. https://doi.org/10.1016/j.molliq.2023.122854

    Article  Google Scholar 

  2. Hossain MS, Shenashen MA, Awual ME, Rehan AI, Rasee AI, Waliullah RM, Kubra KT, Salman MS, Sheikh MC, Hasan MN, Hasan MM, Islam A, Khaleque MA, Marwani HM, Alzahrani KA, Asiri AM, Rahman MM, Awual MR (2024) Benign separation, adsorption, and recovery of rare-earth yb(III) ions with specific ligand-based composite adsorbent. Process Saf Environ Prot 185:367–374. https://doi.org/10.1016/j.psep.2024.03.026

    Article  CAS  Google Scholar 

  3. Awual ME, Salman MS, Hasan MM, Hasan MN, Kubra KT, Sheikh MC, Rasee AI, Rehan AI, Waliullah RM, Hossain MS, Marwani HM, Asiri AM, Rahman MM, Islam A, Khaleque MA, Awual MR (2024) Ligand imprinted composite adsorbent for effective ni(II) ion monitoring and removal from contaminated water. J Ind Eng Chem 131:585–592. https://doi.org/10.1016/j.jiec.2023.10.062

    Article  CAS  Google Scholar 

  4. Waliullah RM, Rehan AI, Awual ME, Rasee AI, Sheikh MC, Salman MS, Hossain MS, Hasan MM, Kubra KT, Hasan MN, Marwani HM, Islam A, Rahman MM, Khaleque MA, Awual MR (2023) Optimization of toxic dye removal from contaminated water using chitosan-grafted novel nanocomposite adsorbent. J Mol Liq. https://doi.org/10.1016/j.molliq.2023.122763

    Article  Google Scholar 

  5. Hasan MN, Salman MS, Islam A, Znad H, Hasan MM (2021) Sustainable composite sensor material for optical cadmium(II) monitoring and capturing from wastewater. Microchem J. https://doi.org/10.1016/j.microc.2020.105800

    Article  Google Scholar 

  6. Rasee AI, Awual E, Rehan AI, Hossain MS, Waliullah RM, Kubra KT, Sheikh MC, Salman MS, Hasan MN, Hasan MM, Marwani HM, Islam A, Khaleque MA, Awual MR (2023) Efficient separation, adsorption, and recovery of Samarium(III) ions using novel ligand-based composite adsorbent. Surf Interfaces. https://doi.org/10.1016/j.surfin.2023.103276

    Article  Google Scholar 

  7. Lin S, Wei W, Wu X, Zhou T, Mao J, Yun YS (2015) Selective recovery of pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: Adsorption performance and mechanisms. J Hazard Mater 299:10–17. https://doi.org/10.1016/j.jhazmat.2015.05.050

    Article  CAS  PubMed  Google Scholar 

  8. Paulino AT, Guilherme MR, Reis AV, Tambourgi EB, Nozaki J, Muniz EC (2007) Capacity of adsorption of Pb2 + and Ni2 + from aqueous solutions by Chitosan produced from silkworm chrysalides in different degrees of deacetylation. J Hazard Mater 147:139–147. https://doi.org/10.1016/j.jhazmat.2006.12.059

    Article  CAS  PubMed  Google Scholar 

  9. Laus R, Costa TG, Szpoganicz B, Fávere VT (2010) Adsorption and desorption of Cu(II), cd(II) and pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. J Hazard Mater 183:233–241. https://doi.org/10.1016/j.jhazmat.2010.07.016

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Li Y, Wang Y, Wang Y, Xu J, Liu X (2023) Competitive adsorption of lead and cadmium on soil aggregate at micro-interfaces: multi-surface modeling and spectroscopic studies. J Hazard Mater 448:130915. https://doi.org/10.1016/j.jhazmat.2023.130915

    Article  CAS  PubMed  Google Scholar 

  11. Mishra PC, Patel RK (2009) Removal of lead and zinc ions from water by low cost adsorbents. J Hazard Mater 168:319–325. https://doi.org/10.1016/j.jhazmat.2009.02.026

    Article  CAS  PubMed  Google Scholar 

  12. Chen AH, Liu SC, Chen CY, Chen CY (2008) Comparative adsorption of Cu(II), zn(II), and pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J Hazard Mater 154:184–191. https://doi.org/10.1016/j.jhazmat.2007.10.009

    Article  CAS  PubMed  Google Scholar 

  13. Ahmedna M, Marshall WE, Husseiny AA, Rao RM, Goktepe I (2004) The use of nutshell carbons in drinking water filters for removal of trace metals. Water Res 38:1062–1068. https://doi.org/10.1016/j.watres.2003.10.047

    Article  CAS  PubMed  Google Scholar 

  14. Awual MR, Hasan MM, Khaleque MA, Sheikh MC (2016) Treatment of copper(II) containing wastewater by a newly developed ligand based facial conjugate materials. Chem Eng J 288:368–376. https://doi.org/10.1016/j.cej.2015.11.108

    Article  CAS  Google Scholar 

  15. Awual MR (2017) Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chem Eng J 307:456–465. https://doi.org/10.1016/j.cej.2016.08.108

    Article  CAS  Google Scholar 

  16. Awual MR, Hasan MM, Shahat A, Naushad M, Shiwaku H, Yaita T (2015) Investigation of ligand immobilized nano-composite adsorbent for efficient cerium(III) detection and recovery. Chem Eng J 265:210–218. https://doi.org/10.1016/j.cej.2014.12.052

    Article  CAS  Google Scholar 

  17. Patel PK, Pandey LM, Uppaluri R (2023) Multi-metal adsorption and cyclic desorption characteristics of zn + 2 and cu + 2 constituting multi-component Synthetic Wastewater System using commercial resins. In: Deka D, Majumder SK, Purkait MK (eds) Sustainable environment. Springer Nature Singapore, Singapore, pp 3–27

    Chapter  Google Scholar 

  18. Zhang Y, Ni S, Wang X, Zhang W, Lagerquist L, Qin M, Willför S, Xu C, Fatehi P (2019) Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles. Chem Eng J 372:82–91. https://doi.org/10.1016/j.cej.2019.04.111

    Article  CAS  Google Scholar 

  19. Shen C, Zhao Y, Li W, Yang Y, Liu R, Morgen D (2019) Global profile of heavy metals and semimetals adsorption using drinking water treatment residual. Chem Eng J 372:1019–1027. https://doi.org/10.1016/j.cej.2019.04.219

    Article  CAS  Google Scholar 

  20. Chen Q, Tang Z, Li H, Wu M, Zhao Q, Pan B (2020) An electron-scale comparative study on the adsorption of six divalent heavy metal cations on MnFe2O4@CAC hybrid: experimental and DFT investigations. Chem Eng J 381:122656. https://doi.org/10.1016/j.cej.2019.122656

    Article  CAS  Google Scholar 

  21. Hou T, Yan L, Li J, Yang Y, Shan L, Meng X, Li X, Zhao Y (2020) Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent. Chem Eng J 384:123331. https://doi.org/10.1016/j.cej.2019.123331

    Article  CAS  Google Scholar 

  22. Hasan MN, Shenashen MA, Hasan MM, Znad H, Awual MR (2021) Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128668

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rehan AI, Rasee AI, Awual ME, Waliullah RM, Hossain MS, Kubra KT, Salman MS, Hasan MM, Hasan MN, Sheikh MC, Marwani HM, Khaleque MA, Islam A, Awual MR (2023) Improving toxic dye removal and remediation using novel nanocomposite fibrous adsorbent. Colloids Surf Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2023.131859. 673:

    Article  Google Scholar 

  24. Awual MR (2019) A facile composite material for enhanced cadmium(II) ion capturing from wastewater. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103378

    Article  Google Scholar 

  25. Awual MR (2017) New type mesoporous conjugate material for selective optical copper(II) ions monitoring & removal from polluted waters. Chem Eng J 307:85–94. https://doi.org/10.1016/j.cej.2016.07.110

    Article  CAS  Google Scholar 

  26. Feng Z, Chen N, Liu T, Feng C (2022) KHCO3 activated biochar supporting MgO for pb(II) and cd(II) adsorption from water: experimental study and DFT calculation analysis. J Hazard Mater 426:128059. https://doi.org/10.1016/j.jhazmat.2021.128059

    Article  CAS  PubMed  Google Scholar 

  27. Marszałek A, Kamińska G, Abdel Salam NF (2022) Simultaneous adsorption of organic and inorganic micropollutants from rainwater by bentonite and bentonitecarbon nanotubes composites. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2021.102550

    Article  Google Scholar 

  28. Ji C, Xu M, Yu H, Lv L, Zhang W (2022) Mechanistic insight into selective adsorption and easy regeneration of carboxyl-functionalized MOFs towards heavy metals. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.127684

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hossain N, Nizamuddin S, Shah K (2022) Thermal-chemical modified rice husk-based porous adsorbents for Cu (II), pb (II), zn (II), mn (II) and Fe (III) adsorption. J Water Process Eng 46:102620. https://doi.org/10.1016/j.jwpe.2022.102620

    Article  Google Scholar 

  30. Teng D, Xu Y, Zhao T, Zhang X, Li Y, Zeng Y (2022) Zein adsorbents with micro/nanofibrous membrane structure for removal of oils, organic dyes, and heavy metal ions in aqueous solution. J Hazard Mater 425:128004. https://doi.org/10.1016/j.jhazmat.2021.128004

    Article  CAS  PubMed  Google Scholar 

  31. Yue XH, Zhang FS, Zhang CC, Qian P (2022) Upcycling of blending waste plastics as zwitterionic hydrogel for simultaneous removal of cationic and anionic heavy metals from aqueous system. J Hazard Mater 432:128746. https://doi.org/10.1016/j.jhazmat.2022.128746

    Article  CAS  PubMed  Google Scholar 

  32. ** Y, Liu Z, Han L, Zhang Y, Li L, Zhu S, Li ZPJ, Wang D (2022) Synthesis of coal-analcime composite from coal gangue and its adsorption performance on heavy metal ions. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2021.127027

    Article  PubMed  PubMed Central  Google Scholar 

  33. Patel PK, Pandey LM, Uppaluri RVS (2024) Highly effective removal of multi-heavy metals from simulated industrial effluent through an adsorption process employing carboxymethyl-chitosan composites. Environ Res 240:117502. https://doi.org/10.1016/j.envres.2023.117502

    Article  CAS  PubMed  Google Scholar 

  34. Reshmy R, Philip E, Madhavan A, Pugazhendhi A, Sindhu R, Sirohi R, Awasthi MK, Pandey A, Binod P (2022) Nanocellulose as green material for remediation of hazardous heavy metal contaminants. J Hazard Mater 424:127516. https://doi.org/10.1016/j.jhazmat.2021.127516

    Article  CAS  PubMed  Google Scholar 

  35. Godiya CB, Revadekar C, Kim J, Park BJ (2022) Amine-bilayer-functionalized cellulose-chitosan composite hydrogel for the efficient uptake of hazardous metal cations and catalysis in polluted water. J Hazard Mater 436:129112. https://doi.org/10.1016/j.jhazmat.2022.129112

    Article  CAS  PubMed  Google Scholar 

  36. Jaiswal KK, Kumar V, Verma R, Verma M, Kumar A, Vlaskin MS, Nanda M, Kim H (2021) Graphitic bio-char and bio-oil synthesis via hydrothermal carbonization-co-liquefaction of microalgae biomass (oiled/de-oiled) and multiple heavy metals remediations. J Hazard Mater 409:124987. https://doi.org/10.1016/j.jhazmat.2020.124987

    Article  CAS  PubMed  Google Scholar 

  37. Gong H, Zhao L, Rui X, Hu J, Zhu N (2022) A review of pristine and modified biochar immobilizing typical heavy metals in soil: applications and challenges. J Hazard Mater 432:128668. https://doi.org/10.1016/j.jhazmat.2022.128668

    Article  CAS  PubMed  Google Scholar 

  38. Patel PK, Pandey LM, Uppaluri RVS (2023) Adsorptive removal of Zn, Fe, and Pb from Zn dominant simulated industrial wastewater solution using polyvinyl alcohol grafted chitosan variant resins. Chem Eng J. https://doi.org/10.1016/j.cej.2023.141563

    Article  Google Scholar 

  39. Han S, Zhou X, **e H, Wang X, Yang L, Wang H, Hao C (2022) Chitosan-based composite microspheres for treatment of hexavalent chromium and EBBR from aqueous solution. Chemosphere 305:135486. https://doi.org/10.1016/j.chemosphere.2022.135486

    Article  CAS  PubMed  Google Scholar 

  40. Salman MS, Sheikh MC, Hasan MM, Hasan MN, Kubra KT, Rehan AI, Awual ME, Rasee AI, Waliullah RM, Hossain MS, Khaleque MA, Alsukaibi AKD, Alshammari HM, Awual MR (2023) Chitosan-coated cotton fiber composite for efficient toxic dye encapsulation from aqueous media. Appl Surf Sci 622:157008. https://doi.org/10.1016/j.apsusc.2023.157008

    Article  CAS  Google Scholar 

  41. Biswas S, Biswas R (2023) Chitosan—the miracle biomaterial as detection and diminishing mediating agent for heavy metal ions: a mini review. Chemosphere 312:137187. https://doi.org/10.1016/j.chemosphere.2022.137187

    Article  CAS  PubMed  Google Scholar 

  42. Li Z, Li H, Zeng X, Liu S, Yang Y (2023) Adsorption and photodegradation of tetracycline by mannose-grafted chitosan composite films: performance, mechanism and availability. Chem Eng J 458:141455. https://doi.org/10.1016/j.cej.2023.141455

    Article  CAS  Google Scholar 

  43. Wang M, You X (2023) Efficient adsorption of antibiotics and heavy metals from aqueous solution by structural designed PSSMA-functionalized-chitosan magnetic composite. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2022.140417

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ren Y, Abbood HA, He F, Peng H, Huang K (2013) Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption. Chem Eng J 226:300–311. https://doi.org/10.1016/j.cej.2013.04.059

    Article  CAS  Google Scholar 

  45. Tsai WC, De Luna MDG, Bermillo-Arriesgado HLP, Futalan CM, Colades JI, Wan MW (2016) Competitive Fixed-Bed Adsorption of Pb(II), Cu(II), and Ni(II) from Aqueous Solution Using Chitosan-Coated Bentonite. Int J Polym Sci. https://doi.org/10.1155/2016/1608939

    Article  Google Scholar 

  46. Nagireddi S, Katiyar V, Uppaluri R (2017) Pd(II) adsorption characteristics of glutaraldehyde cross-linked chitosan copolymer resin. Int J Biol Macromol 94:72–84. https://doi.org/10.1016/j.ijbiomac.2016.09.088

    Article  CAS  PubMed  Google Scholar 

  47. Suc N, Van, Ly HTY (2013) Lead (II) removal from aqueous solution by chitosan flake modified with citric acid via crosslinking with glutaraldehyde. J Chem Technol Biotechnol 88:1641–1649. https://doi.org/10.1002/jctb.4013

    Article  CAS  Google Scholar 

  48. Repo E, Warchoł JK, Bhatnagar A, Sillanpää M (2011) Heavy metals adsorption by novel EDTA-modified chitosan-silica hybrid materials. J Colloid Interface Sci 358:261–267. https://doi.org/10.1016/j.jcis.2011.02.059

    Article  CAS  PubMed  Google Scholar 

  49. Repo E, Warchol JK, Kurniawan TA, Sillanpää MET (2010) Adsorption of Co(II) and ni(II) by EDTA- and/or DTPA-modified chitosan: kinetic and equilibrium modeling. Chem Eng J 161:73–82. https://doi.org/10.1016/j.cej.2010.04.030

    Article  CAS  Google Scholar 

  50. Verma M, Lee I, Oh J, Kumar V, Kim H (2022) Synthesis of EDTA-functionalized graphene oxide-chitosan nanocomposite for simultaneous removal of inorganic and organic pollutants from complex wastewater. Chemosphere 287:132385. https://doi.org/10.1016/j.chemosphere.2021.132385

    Article  CAS  PubMed  Google Scholar 

  51. Zhao F, Repo E, Meng Y, Wang X, Yin D, Sillanpää M (2016) An EDTA-β-cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater. J Colloid Interface Sci 465:215–224. https://doi.org/10.1016/j.jcis.2015.11.069

    Article  CAS  PubMed  Google Scholar 

  52. Kumar P, Mohan L, Uppaluri RVS (2023) Cyclic desorption based efficacy of polyvinyl alcohol-chitosan variant resins for multi heavy-metal removal. Int J Biol Macromol 242:124812. https://doi.org/10.1016/j.ijbiomac.2023.124812

    Article  CAS  Google Scholar 

  53. Patel PK, Nagireddi S, Uppaluri RVS, Pandey LM (2022) Batch adsorption characteristics of Dowex Marathon MSA commercial resin for au(III) removal from synthetic electroless plating solutions. Mater Today Proc 68:824–829. https://doi.org/10.1016/j.matpr.2022.06.258

    Article  CAS  Google Scholar 

  54. Hasan MM, Kubra KT, Hasan MN, Awual ME, Salman MS, Sheikh MC, Rehan AI, Rasee AI, Waliullah RM, Islam MS, Khandaker S, Islam A, Hossain MS, Alsukaibi AKD, Alshammari HM, Awual MR (2023) Sustainable ligand-modified based composite material for the selective and effective cadmium(II) capturing from wastewater. J Mol Liq. https://doi.org/10.1016/j.molliq.2022.121125

    Article  Google Scholar 

  55. Hasan MN, Salman MS, Hasan MM, Kubra KT, Sheikh MC, Rehan AI, Rasee AI, Awual ME, Waliullah RM, Hossain MS, Islam A, Khandaker S, Alsukaibi AKD, Alshammari HM, Awual MR (2023) Assessing sustainable Lutetium(III) ions adsorption and recovery using novel composite hybrid nanomaterials. J Mol Struct. https://doi.org/10.1016/j.molstruc.2022.134795

    Article  Google Scholar 

  56. Awual MR, Hasan MM (2015) Fine-tuning mesoporous adsorbent for simultaneous ultra-trace palladium(II) detection, separation and recovery. J Ind Eng Chem 21:507–515. https://doi.org/10.1016/j.jiec.2014.03.013

    Article  CAS  Google Scholar 

  57. Salman MS, Hasan MN, Kubra KT, Hasan MM (2021) Optical detection and recovery of Yb(III) from waste sample using novel sensor ensemble nanomaterials. Microchem J. https://doi.org/10.1016/j.microc.2020.105868

    Article  Google Scholar 

  58. Salman MS, Sheikh MC, Hasan MM, Hasan MN, Kubra KT, Rehan AI, Awual ME, Rasee AI, Waliullah RM, Hossain MS, Khaleque MA, Alsukaibi AKD, Alshammari HM, Awual MR (2023) Chitosan-coated cotton fiber composite for efficient toxic dye encapsulation from aqueous media. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2023.157008

    Article  Google Scholar 

  59. Awual MR (2019) An efficient composite material for selective lead(II) monitoring and removal from wastewater. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2019.103087

    Article  Google Scholar 

  60. Awual MR, Hasan MM, Asiri AM, Rahman MM (2019) Cleaning the arsenic(V)contaminated water for safe-guarding the public health using novel composite material. Compos B Eng 171:294–301. https://doi.org/10.1016/j.compositesb.2019.05.078

    Article  CAS  Google Scholar 

  61. Awual MR (2016) Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater. Chem Eng J 303:539–546. https://doi.org/10.1016/j.cej.2016.06.040

    Article  CAS  Google Scholar 

  62. Salman MS, Hasan MN, Hasan MM, Kubra KT, Sheikh MC, Rehan AI, Waliullah RM, Rasee AI, Awual ME, Hossain MS, Alsukaibi AKD, Alshammari HM, Awual MR (2023) Improving copper(II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent. J Mol Struct. https://doi.org/10.1016/j.molstruc.2023.135259

    Article  Google Scholar 

  63. Shahat A, Kubra KT, Salman MS, Hasan MN, Hasan MM (2021) Novel solid-state sensor material for efficient cadmium(II) detection and capturing from wastewater. Microchem J. https://doi.org/10.1016/j.microc.2021.105967

    Article  Google Scholar 

  64. Patel PK, Pandey LM, Uppaluri RVS (2023) Synthesized carboxymethyl-chitosan variant composites for cyclic adsorption- desorption based removal of Fe, Pb, and Cu. Chemosphere 340:139780. https://doi.org/10.1016/j.chemosphere.2023.139780

    Article  CAS  PubMed  Google Scholar 

  65. Hasan MM, Salman MS, Hasan MN, Rehan AI, Awual ME, Rasee AI, Waliullah RM, Hossain MS, Kubra KT, Sheikh MC, Khaleque MA, Marwani HM, Islam A, Awual MR (2023) Facial conjugate adsorbent for sustainable Pb(II) ion monitoring and removal from contaminated water. Colloids Surf Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2023.131794

    Article  Google Scholar 

  66. Awual MR, Hasan MM, Znad H (2015) Organic-inorganic based nano-conjugate adsorbent for selective palladium(II) detection, separation and recovery. Chem Eng J 259:611–619. https://doi.org/10.1016/j.cej.2014.08.028

    Article  CAS  Google Scholar 

  67. Kubra KT, Salman MS, Hasan MN (2021) Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J Mol Liq. https://doi.org/10.1016/j.molliq.2021.115468

    Article  Google Scholar 

  68. Awual MR, Hasan MM, Islam A, Rahman MM, Asiri AM, Khaleque MA, Sheikh MC (2019) Introducing an amine functionalized novel conjugate material for toxic nitrite detection and adsorption from wastewater. J Clean Prod 228:778–785. https://doi.org/10.1016/j.jclepro.2019.04.280

    Article  CAS  Google Scholar 

  69. Huang Y, Zheng H, Hu X, Wu Y, Tang X, He Q, Peng S (2022) Enhanced selective adsorption of lead(II) from complex wastewater by DTPA functionalized chitosan-coated magnetic silica nanoparticles based on anion-synergism. J Hazard Mater 422:126856. https://doi.org/10.1016/j.jhazmat.2021.126856

    Article  CAS  PubMed  Google Scholar 

  70. Huang Y, Wu H, Shao T, Zhao X, Peng H, Gong Y, Wan H (2018) Enhanced copper adsorption by DTPA-chitosan/alginate composite beads: mechanism and application in simulated electroplating wastewater. Chem Eng J 339:322–333. https://doi.org/10.1016/j.cej.2018.01.071

    Article  CAS  Google Scholar 

  71. Chen A, Yang C, Chen C, Chen C, Chen C (2009) The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu (II), zn (II), ni (II) and pb (II) ions in aqueous medium. 163:1068–1075. https://doi.org/10.1016/j.jhazmat.2008.07.073

    Article  Google Scholar 

  72. Huacai Ge SH (2010) Microwave Preparation and Adsorption properties of EDTA-Modified cross-linked Chitosan. J Appl Polym Sci 115:514–519. https://doi.org/10.1002/app.30843. A novel chitosan-based adsorbent (CCTE) was

    Article  CAS  Google Scholar 

  73. Fan X, Wang X, Cai Y, **e H, Han S, Hao C (2022) Functionalized cotton charcoal/chitosan biomass-based hydrogel for capturing Pb2+, Cu2 + and MB. J Hazard Mater 423:127191. https://doi.org/10.1016/j.jhazmat.2021.127191

    Article  CAS  PubMed  Google Scholar 

  74. Awual MR, Hasan MN, Hasan MM, Salman MS, Sheikh MC, Kubra KT, Islam MS, Marwani HM, Islam A, Khaleque MA, Waliullah RM, Hossain MS, Rasee AI, Rehan AI, Awual ME (2023) Green and robust adsorption and recovery of Europium(III) with a mechanism using hybrid donor conjugate materials. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2023.124088

    Article  Google Scholar 

  75. Awual MR, Hasan MM, Islam A, Rahman MM, Asiri AM, Khaleque MA, Sheikh MC (2019) Offering an innovative composited material for effective lead(II) monitoring and removal from polluted water. J Clean Prod 231:214–223. https://doi.org/10.1016/j.jclepro.2019.05.125

    Article  CAS  Google Scholar 

  76. Awual MR (2015) A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem Eng J 266:368–375. https://doi.org/10.1016/j.cej.2014.12.094

    Article  CAS  Google Scholar 

  77. Kubra KT, Hasan MM, Hasan MN, Salman MS, Khaleque MA, Sheikh MC, Rehan AI, Rasee AI, Waliullah RM, Awual ME, Hossain MS, Alsukaibi AKD, Alshammari HM, Awual MR (2023) The heavy lanthanide of Thulium(III) separation and recovery using specific ligand-based facial composite adsorbent. Colloids Surf Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2023.131415

    Article  Google Scholar 

  78. Li YH, Du Q, Peng X, Wang D, Wang Z, **a Y, Wei B (2011) Physico-chemical characteristics and lead biosorption properties of Enteromorpha prolifera. Colloids Surf B Biointerfaces 85:316–322. https://doi.org/10.1016/j.colsurfb.2011.03.003

    Article  CAS  PubMed  Google Scholar 

  79. Busuioc LT, Simonescu CM, Patescu RE, Onose C (2016) Removal of Lead (II), Nickel (II), Zinc (II) and Copper (II) from Multi-metal Systems by Chitosan-glutaraldehyde Beads. 1–7

  80. Misra RK, Jain SK, Khatri PK (2011) Iminodiacetic acid functionalized cation exchange resin for adsorptive removal of cr(VI), cd(II), ni(II) and pb(II) from their aqueous solutions. J Hazard Mater 185:1508–1512. https://doi.org/10.1016/j.jhazmat.2010.10.077

    Article  CAS  PubMed  Google Scholar 

  81. Li X, Li Y, Ye Z (2011) Preparation of macroporous bead adsorbents based on poly(vinyl alcohol)/chitosan and their adsorption properties for heavy metals from aqueous solution. Chem Eng J 178:60–68. https://doi.org/10.1016/j.cej.2011.10.012

    Article  CAS  Google Scholar 

  82. Nadarajah K, Bandala ER, Zhang Z, Mundree S, Goonetilleke A (2021) Removal of heavy metals from water using engineered hydrochar: kinetics and mechanistic approach. J Water Process Eng 40:101929. https://doi.org/10.1016/j.jwpe.2021.101929

    Article  Google Scholar 

  83. Li X, Li Y, Zhang S, Ye Z (2012) Preparation and characterization of new foam adsorbents of poly(vinyl alcohol)/chitosan composites and their removal for dye and heavy metal from aqueous solution. Chem Eng J 183:88–97. https://doi.org/10.1016/j.cej.2011.12.025

    Article  CAS  Google Scholar 

  84. Futalan CM, Kan CC, Dalida ML, Hsien KJ, Pascua C, Wan MW (2011) Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite. Carbohydr Polym 83:528–536. https://doi.org/10.1016/j.carbpol.2010.08.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Biosciences and Bioengineering Department (BSBE), Centre for the Environment, Chemical Engineering Department, and Central Instruments Facility at the Indian Institute of Technology Guwahati and Civil Engineering Department at the Institute of Engineering and Technology Lucknow for offering the obligatory resources.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Prabhat Kumar Patel: Data curation, Formal analysis, Investigation, Methodology, Writing–original draft, Writing–review & editing, Validation. Lalit Mohan Pandey: Supervision, Validation, Visualization, Writing–review & editing. Ramagopal V.S. Uppaluri: Conceptualization, Supervision, Validation, Visualization, Writing–review & editing.

Corresponding author

Correspondence to Ramagopal V.S. Uppaluri.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, P.K., Pandey, L.M. & Uppaluri, R.V. Cyclic Adsorption and Desorption Characteristics of Citric Acid-chitosan Variant Resins for Pb, Fe, and Zn Removal from Simulated Mining and Agricultural Wastewater System. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03343-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03343-0

Keywords

Navigation