Log in

Development of Dielectric Biocomposite and Biaxially Oriented Films from Poly(Lactic Acid) and Nano-silver Coated Microcrystalline Cellulose

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The objective of this study is to enhance the dielectric properties of biocomposite films through the fabrication of biaxially oriented films (BO) and the incorporation of silver-coated microcrystalline cellulose (Ag/MCC). The silver coating was used in concentrations ranging from 0.2 to 2% using an environmentally friendly method. The dielectric constant and dielectric loss of all sample were measured in the frequency range from 103 to − 106 Hz. The sample containing 0.6% silver on microcrystalline cellulose (0.6Ag/MCC) demonstrated the highest dielectric constant, measured 64. Subsequently, biocomposite films were produced by utilizing 0.6%Ag/MCC at different ratios (1–5 phr) through a one-step cast film twin-screw extruder. The sample with the highest dielectric constant was PLA-0.6Ag/MCC4, which increased from 3 (PLA) to 37. Furthermore, biaxially oriented films were successfully prepared using a film biaxial stretching machine, achieving a thickness of 70 μm. This technique can significantly improve their dielectric properties, surpassing those of unstretched films. The improvement in dielectric properties can be attributed to the reorganization of molecular chains, promoting a more orderly arrangement and increases crystallinity. Therefore, the resultant biocomposite and biaxially oriented film demonstrate exceptional dielectric properties, rendering them suitable for dielectric applications such as capacitor dielectric films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Costa V, Aquino F, Paranhos C, Pereira-Filho E (2017) Identification and classification of polymer e-waste using laser-induced breakdown spectroscopy (LIBS) and chemometric tools. Polym Test 59:390–395. https://doi.org/10.1016/j.polymertesting.2017.02.017

    Article  CAS  Google Scholar 

  2. Cao Y, Uhrich K (2018) Biodegradable and biocompatible polymers for electronic applications: a review. J Bioact Compat Polym 34:3–15. https://doi.org/10.1177/0883911518818075

    Article  CAS  Google Scholar 

  3. Zhao X, Liu J, Li J, Liang X, Zhou W, Peng S (2022) Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials. IntJ Biol Macromol 218:115–134. https://doi.org/10.1016/j.ijbiomac.2022.07.091

    Article  CAS  Google Scholar 

  4. Jem K, Tan B (2020) The development and challenges of poly (lactic acid) and poly (glycolic acid). Adv Ind Eng Polym Res 3:60–70. https://doi.org/10.1016/j.aiepr.2020.01.002

    Article  Google Scholar 

  5. Alotabi M, Alshammari B, Saba N, Alothman O, Kian L, Khan A, Jawaid M (2020) Microcrystalline cellulose from fruit bunch stalk of date palm: isolation and characterization. J Polym Environ 28:1766–1775. https://doi.org/10.1007/s10924-020-01725-8

    Article  CAS  Google Scholar 

  6. Rasheed M, Jawaid M, Karim Z, Abdullah L (2020) Morphological, physiochemical and thermal properties of microcrystalline cellulose (MCC) extracted from bamboo fiber. Molecules. https://doi.org/10.3390/molecules25122824

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jayamani E, Hamdan S, Rahman M, Bakri M (2015) Dielectric properties of lignocellulosic fibers reinforced polymer composites: effect of fiber loading and alkaline treatment. Mater Today: Proc 2:2757–2766. https://doi.org/10.1016/j.matpr.2015.07.269

    Article  CAS  Google Scholar 

  8. Farooqi Z, Sultana H, Begum R, Usman M, Ajmal M, Nisar J, Irfan A, Azam M (2022) Catalytic degradation of malachite green using a crosslinked colloidal polymeric system loaded with silver nanoparticles. Int J Environ Anal Chem 102:4104–4120. https://doi.org/10.1080/03067319.2020.1779247

    Article  CAS  Google Scholar 

  9. Nouh S, Benthami K, Samy R, El-Hagg A (2020) Effect of gamma radiation on the structure and optical properties of polycarbonate-polybutylene terephthalate/silver nanocomposite films. Chem Phys Lett 741:137123. https://doi.org/10.1016/j.cplett.2020.137123

    Article  CAS  Google Scholar 

  10. Atta A, Abdelhamied M, Abdelreheem A, Althubiti N (2022) Effects of polyaniline and silver nanoparticles on the structural characteristics and electrical properties of methylcellulose polymeric films. Inorg Chem Comm 135:109085. https://doi.org/10.1016/j.inoche.2021.109085

    Article  CAS  Google Scholar 

  11. Abdelhamied M, Abdelreheem A, Atta A (2021) Influence of ion beam and silver nanoparticles on dielectric properties of flexible PVA/PANI polymer composite films. Plas Rubber Compos. https://doi.org/10.1080/14658011.2021.1928998

    Article  Google Scholar 

  12. Demchenko V, Riabov S, Kobylinskyi S, Goncharenko L, Rybalchenko N, Kruk A, Moskalenko O, Shut M (2020) Effect of the type of reducing agents of silver ions in interpolyelectrolyte-metal complexes on the structure, morphology and properties of silver-containing nanocomposites. Sci Rep 10:7126. https://doi.org/10.1038/s41598-020-64079-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lertprapaporn T, Manuspiya H, Laobuthee A (2018) Dielectric improvement from novel polymeric hybrid films derived by polylactic acid/nanosilver coated microcrystalline cellulose. Mater Today: Proc 5:9326–9335. https://doi.org/10.1016/j.matpr.2017.10.107

    Article  CAS  Google Scholar 

  14. Khankhuean A, Sukthavorn K, Nootsuwan N, Veranitisagul C, Laobuthee A (2023) Nano-silver-coated porous clay heterostructure fillers for PLA and biaxially oriented poly(lactic acid) dielectric films. ACS Appl Polym Mater 5:1374–1389. https://doi.org/10.1021/acsapm.2c01897

    Article  CAS  Google Scholar 

  15. Yin K, Zhou Z, Schuele D, Wolak M, Zhu L, Baer E (2016) Effects of interphase modification and biaxial orientation on dielectric properties of poly(ethylene terephthalate)/poly(vinylidene fluoride-co-hexafluoropropylene) multilayer films. ACS Appl Mater Interfaces 8:13555–13566. https://doi.org/10.1021/acsami.6b01287

    Article  CAS  PubMed  Google Scholar 

  16. Jariyasakoolroj P, Tashiro K, Wang H, Yamamoto H, Yamamoto W, Kerddonfag N, Chirachanchai S (2015) Isotropically small crystalline lamellae induced by high biaxial-stretching rate as a key microstructure for super-tough polylactide film. Polym 68:234–245. https://doi.org/10.1016/j.polymer.2015.05.006

    Article  CAS  Google Scholar 

  17. Lu H, Li L (2018) Crystalline structure, dielectric, and mechanical properties of simultaneously biaxially stretched polyvinylidene fluoride film. Polym Adv Technol 29:3056–3064. https://doi.org/10.1002/pat.4426

    Article  CAS  Google Scholar 

  18. Saelee K, Yingkamhaeng N, Nimchua T, Sukyai P (2016) An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization. Ind Crops Prod 82:149–160. https://doi.org/10.1016/j.indcrop.2015.11.064

    Article  CAS  Google Scholar 

  19. Senapitakkul V, Vanit**da G, Torgbo S, Pinmanee P, Nimchua T, Rungthaworn P, Sukatta U, Sukyai P (2020) Pretreatment of cellulose from sugarcane bagasse with xylanase for improving dyeability with natural dyes. ACS Omega 5:28168–28177. https://doi.org/10.1021/acsomega.0c03837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramphul H, Bhaw-Luximon A, Jhurry D (2017) Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering. Carbohydr Polym 178:238–250. https://doi.org/10.1016/j.carbpol.2017.09.046

    Article  CAS  PubMed  Google Scholar 

  21. Cheng S, Huang A, Wang S, Zhang Q (2016) Effect of different heat treatment temperatures on the chemical composition and structure of Chinese fir wood. Bioresour 11:4006–4016. https://doi.org/10.15376/biores.11.2.4006-4016

    Article  CAS  Google Scholar 

  22. Abdel-Halim E (2014) Chemical modification of cellulose extracted from sugarcane bagasse: preparation of hydroxyethyl cellulose. Arab J Chem 7:362–371. https://doi.org/10.1016/j.arabjc.2013.05.006

    Article  CAS  Google Scholar 

  23. Melesse G, Hone F, Mekonnen M (2022) Extraction of cellulose from sugarcane bagasse optimization and characterization. Adv Mater Sci Eng 2022:1712207. https://doi.org/10.1155/2022/1712207

    Article  CAS  Google Scholar 

  24. Mostafa A, Lotfy V, Mwafy E, Basta H (2020) Influence of coating by Cu and Ag nanoparticles via pulsed laser deposition technique on optical, electrical and mechanical properties of cellulose paper. J Mol Struct 1203:127472. https://doi.org/10.1016/j.molstruc.2019.127472

    Article  CAS  Google Scholar 

  25. Kandhola G, Djioleu A, Rajan K, Labbé N, Sakon J, Carrier D, Kim W (2020) Maximizing production of cellulose nanocrystals and nanofibers from pre-extracted loblolly pine kraft pulp: a response surface approach. Bioresour Bioprocess 7:19. https://doi.org/10.1186/s40643-020-00302-0

    Article  Google Scholar 

  26. Man Z, Muhammad N, Sarwono A, Bustam M, KumarM, Rafiq S (2011) Preparation of cellulose nanocrystals using an ionic liquid. J Polym Environ 19:726–731. https://doi.org/10.1007/s10924-011-0323-3

    Article  CAS  Google Scholar 

  27. Singh A, Ranawat B, Meena R (2019) Extraction and characterization of cellulose from halophytes: next generation source of cellulose fibre. SN Appl Sci 1:1311. https://doi.org/10.1007/s42452-019-1160-6

    Article  CAS  Google Scholar 

  28. Beroual M, Trache D, Mehelli O, Boumaza L, Tarchoun A, Derradji M, Khimeche K (2021) Effect of the delignification process on the physicochemical properties and thermal stability of microcrystalline cellulose extracted from date palm fronds. Waste Biomass Valorization 12:2779–2793. https://doi.org/10.1007/s12649-020-01198-9

    Article  CAS  Google Scholar 

  29. Asif M, Ahmed D, Ahmad N, QamarM, Alruwaili N, Bukhari S (2022) Extraction and characterization of microcrystalline cellulose from lagenaria siceraria fruit pedicles. Polymers 14:1867. https://doi.org/10.3390/polym14091867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mafa M, Malgas S, Bhattacharya A, Rashamuse K, Pletschke B (2020) The effects of alkaline pretreatment on agricultural biomasses (corn cob and sweet sorghum bagasse) and their hydrolysis by a termite-derived enzyme cocktail. Agronomy 10:1211. https://doi.org/10.3390/agronomy10081211

    Article  CAS  Google Scholar 

  31. Du P, Xu Y, Shi Y, Xu Q, Li S, Gao M (2022) Preparation and shape change of silver nanoparticles (AgNPs) loaded on the dialdehyde cellulose by in-situ synthesis method. Cellul 29(12):6831–6843. https://doi.org/10.1007/s10570-022-04692-6

    Article  CAS  Google Scholar 

  32. Hou W, Yang L, Mo Y, Yin F, Huang Y, Zheng X (2021) Static dielectric constant and dielectric loss of cellulose insulation: molecular dynamics simulations. High Volt 6(6):1051–1060. https://doi.org/10.1049/hve2.12087

    Article  Google Scholar 

  33. Jayamani E, Hamdan S, Rahman M, Bakri M (2014) Comparative study of dielectric properties of hybrid natural fiber composites. Procedia Eng 97:536–544. https://doi.org/10.1016/j.proeng.2014.12.280

    Article  CAS  Google Scholar 

  34. Chen Y, Liu Y, **a Y, Liu X, Qiang Z, Yang J, Zhang B, Hu Z, Wang Q, Wu W, Duan Y, Fu K, Zhang J (2020) Electric field-induced assembly and alignment of silver-coated cellulose for polymer composite films with enhanced dielectric permittivity and anisotropic light transmission. ACS Appl Mater Interfaces 12:24242–24249. https://doi.org/10.1021/acsami.0c03086

    Article  CAS  PubMed  Google Scholar 

  35. Zhu P, Weng L, Zhang X, Wang X, Guan L, Shi J, Liu L (2020) Enhanced dielectric performance of TPU composites filled with graphene@poly(dopamine)-Ag core-shell nanoplatelets as fillers. Polym Test 90:106671. https://doi.org/10.1016/j.polymertesting.2020.106671

    Article  CAS  Google Scholar 

  36. Dogu B, Kaynak C (2016) Behavior of polylactide/microcrystalline cellulose biocomposites: effects of filler content and interfacial compatibilization. Cellul 23:611–622. https://doi.org/10.1007/s10570-015-0839-0

    Article  CAS  Google Scholar 

  37. **an X, Wang X, Zhu Y, Guo Y, Tian Y (2018) Effects of MCC content on the structure and performance of PLA/MCC biocomposites. J Polym Environ 26:3484–3492. https://doi.org/10.1007/s10924-018-1226-3

    Article  CAS  Google Scholar 

  38. Sung S, Chang Y, Han J (2017) Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydr Polym 169:495–503. https://doi.org/10.1016/j.carbpol.2017.04.037

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Z, Cao B, Jiang N (2023) The mechanical properties and degradation behavior of 3D-printed cellulose nanofiber/polylactic acid composites. Materials 16:6197. https://doi.org/10.3390/ma16186197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mathew A, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025. https://doi.org/10.1002/app.21779

    Article  CAS  Google Scholar 

  41. Lang H, Chen X, Tian J, Chen J, Zhou M, Lu F, Qian S (2022) Effect of microcrystalline cellulose on the properties of PBAT/thermoplastic starch biodegradable film with chain extender. Polym (Basel) 14:4517. https://doi.org/10.3390/polym14214517

    Article  CAS  Google Scholar 

  42. da Silva E, da Silva M, Meneghetti S, Machado G, Alencar M, Hickmann M, Meneghetti R (2008) Synthesis of colloids based on gold nanoparticles dispersed in castor oil. J Nanopart Res 10:201–208. https://doi.org/10.1007/s11051-008-9483-z

    Article  CAS  Google Scholar 

  43. Fukushima K, Tabuani D, Arena M, Gennari M, Camino G (2013) Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. React Funct Polym 73:540–549. https://doi.org/10.1016/j.reactfunctpolym.2013.01.003

    Article  CAS  Google Scholar 

  44. Kashi S, Gupta K, Baum T, Kao N, Bhattacharya N (2016) Dielectric properties and electromagnetic interference shielding effectiveness of graphene-based biodegradable nanocomposites. Mater Des 109:68–78. https://doi.org/10.1016/j.matdes.2016.07.062

    Article  CAS  Google Scholar 

  45. Chotiradsirikun S, Than-ardna B, Guo R, Bhalla A, Manuspiya H (2023) Nanocomposite films of PLA/PBAT blends incorporated with porous clay heterostructure from mixed surfactant systems and their effect of temperature and pressure on dielectric properties. J Polym Res 30:95. https://doi.org/10.1007/s10965-023-03465-4

    Article  CAS  Google Scholar 

  46. Bonardd S, Robles E, Barandiaran I, Saldías C, Leiva Á, Kortaberria G (2018) Biocomposites with increased dielectric constant based on chitosan and nitrile-modified cellulose nanocrystals. Carbohydr Polym 199:20–30. https://doi.org/10.1016/j.carbpol.2018.06.088

    Article  CAS  PubMed  Google Scholar 

  47. Khouaja A, Koubaa A, Ben Daly H (2021) Dielectric properties and thermal stability of cellulose high-density polyethylene bio-based composites. Ind Crops Prod 171:113928. https://doi.org/10.1016/j.indcrop.2021.113928

    Article  CAS  Google Scholar 

  48. Zhang J, Tsuji H, Ozaki Y (2004) Weak intermolecular interactions during the melt crystallization of poly(l-lactide) investigated by two-dimensional infrared correlation spectroscopy. J Phys Chem B 108:11514–11520. https://doi.org/10.1021/jp048308q

    Article  CAS  Google Scholar 

  49. Na B, Tian N, Lv R, Li Z, Xu W, Fu Q (2010) Evidence of sequential ordering during cold crystallization of poly(l-lactide). Polym 51:563–567. https://doi.org/10.1016/j.polymer.2009.11.064

    Article  CAS  Google Scholar 

  50. Na B, Lv R, Zou S, Li Z, Tian N, Fu Q (2010) Spectroscopic evidence of melting of ordered structures in the aged glassy poly(l-lactide). Macromol 43:1702–1705. https://doi.org/10.1021/ma100012c

    Article  CAS  Google Scholar 

  51. Tsai C, Wu R, Cheng Y, Li S, Siao Y, Kong D, Jang G (2010) Crystallinity and dimensional stability of biaxial oriented poly(lactic acid) films. Polym Degrad Stab 95:1292–1298. https://doi.org/10.1016/j.polymdegradstab.2010.02.032

    Article  CAS  Google Scholar 

  52. Chapleau N, Huneault M, Li H (2007) Biaxial orientation of polylactide/thermoplastic starch blends. Int Polym Process 22:402–409. https://doi.org/10.3139/217.2070

    Article  CAS  Google Scholar 

  53. Li Z, Ye L, Zhao X, Coates P, Caton-Rose F, Martyn M (2017) Structure and biocompatibility of highly oriented poly(lactic acid) film produced by biaxial solid hot stretching. J Ind Eng Chem 52:338–348. https://doi.org/10.1016/j.jiec.2017.04.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Department of Materials and Metallurgical Engineering, Faculty of Engineering, Rajamangala and The Petroleum and Petrochemical College, Chulalongkorn University for supporting this study.

Funding

The authors extend their gratitude to the following organizations for their generous financial support: Funding for this research was provided by the National Research Council of Thailand (NRCT) through the Kasetsart University Research and Development Institute (KURDI), under grant number FF(KU) 51.67.

Author information

Authors and Affiliations

Authors

Contributions

Apirat Laobuthee : designing the idea and experimental tests, discussing, reading, editing, and final approval of the version to be published. Kanthita Sitisan : Experimental tests fabricating and characterising the experimental samples, analysing the data and writing and editig the manuscript. Kankavee Sukthavorn and Piyawanee Jariyasakoolroj: Reviewing commenting and discussing and editing. Chatchai Veranitisagul and Nollapan Nootsuwan: Reviewing and providing the facilities for this study. All authors reviewed the manuscript.

Corresponding author

Correspondence to Apirat Laobuthee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitisan, K., Sukthavorn, K., Nootsuwan, N. et al. Development of Dielectric Biocomposite and Biaxially Oriented Films from Poly(Lactic Acid) and Nano-silver Coated Microcrystalline Cellulose. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03222-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03222-8

Keywords

Navigation