Log in

Sound Absorption and Natural Polysaccharides: The case of Persian Gum and Tragacanth Gum

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

To prepare high-performance sound absorbing materials, the use of plant materials is a new approach based on environmental protection. In this study, two types of gum (Persian Gum and Tragacanth Gum) and Starch, gelatin and wheat straw were used as environmental friendly materials. The Three samples were prepared with certain weight-volume compositions of these materials based on the sol-gel and freeze-drying method. The manufactured samples were evaluated in terms of sound absorption properties, thermal stability and mechanical properties. The results showed different structures in terms of microspores and macrospores. the sample containing the combination of two gums (Persian Gum and Tragacanth Gum), with density (30.0358 g/cm), porosity (94.80%) and sound absorption coefficient (0.44) shows better performance than the other two samples. In this way, the sound absorption coefficient in high frequencies showed more than 70% improvement in such samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fouladi D, Nassiri P, Monazzam E, Farahani S, Hassanzadeh G, Hoseini M (2012) Industrial noise exposure and salivary cortisol in blue collar industrial workers. Noise and Health 14:184–189. https://doi.org/10.4103/1463-1741.99894

    Article  PubMed  Google Scholar 

  2. Dehaghi B, Khademian F, Ahmadi Angali K (2020) Non-auditory effects of industrial chronic noise exposure on workers; change in salivary cortisol pattern. J Prev Med Hyg 61:E650–e653. https://doi.org/10.15167/2421-4248/jpmh2020.61.4.1380

    Article  Google Scholar 

  3. Zare S, Baneshi MR, Hemmatjo R, Ahmadi S, Omidvar M, Dehaghi BF (2019) The effect of occupational noise exposure on serum cortisol concentration of night-shift Industrial Workers: a Field Study. Saf Health Work 10:109–113. https://doi.org/10.1016/j.shaw.2018.07.002

    Article  PubMed  Google Scholar 

  4. El-Basheer TM (2022) Study on audiometer calibration at the extended high-frequency range 8–16 kHz. Noise & Vibration Worldwide 53:24–37

    Article  Google Scholar 

  5. Roy M, Shamim F, Majumder R (2018) Evaluation of environmental noise in urban areas: a noise pollution assessment approach. Med Agric Environ Sci 2:21–40

    Google Scholar 

  6. Cao L, Fu Q, Si Y, Ding B, Yu J (2018) Porous materials for sound absorption. Compos Commun 10:25–35. https://doi.org/10.1016/j.coco.2018.05.001

    Article  Google Scholar 

  7. Chen S, Jiang Y, Chen J, Wang D (2015) The Effects of Various Additive Components on the Sound Absorption Performances of Polyurethane Foams. Advances in Materials Science and Engineering, 2015, 317561. https://doi.org/10.1155/2015/317561

  8. Ibrahimi Ghavamabadi L, Fouladi Dehaghi B, Hesampour M, Ahmadi Angali K (2020) Application of a TiO2 nanocomposite in earplugs: a case study of noise reduction. Int J Occup Saf Ergon 26:646–650. https://doi.org/10.1080/10803548.2018.1452363

    Article  PubMed  Google Scholar 

  9. Chu RKM, Naguib HE, Atalla N (2009) Synthesis and characterization of Open-Cell foams for sound absorption with rotational molding method. Polym Eng Sci 49:1744–1754. https://doi.org/10.1002/pen.21412

    Article  CAS  Google Scholar 

  10. Olszewski, A., Kosmela, P., Piasecki, A., Żukowska, W., Szczepański, M., Wojtasz,P.,. Hejna, A. (2022). Comprehensive Investigation of Stoichiometry–Structure–Performance Relationships in Flexible Polyurethane Foams. Polymers, 14(18)

  11. Najihi I, Ennawaoui C, Hajjaji A, Boughaleb Y (2023) Exploring the piezoelectric porous polymers for energy harvesting: a review. Energy Harvesting and Systems. https://doi.org/10.1515/ehs-2022-0159

    Article  Google Scholar 

  12. Ray SS, Banerjee R (2022) Chapter 1 - Introduction to polymer foams and foaming. In S. S. Ray & R. Banerjee (Eds.), Foamability of Thermoplastic Polymeric Materials (pp. 1–16). Elsevier. https://doi.org/10.1016/B978-0-323-90767-5.00003-0

  13. Chen Z, Fu X, Liu R, Song Y, Yin X (2023) Fabrication, performance, and potential applications of MXene Composite aerogels. Nanomaterials 13:2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ganesan K, Budtova T, Ratke L, Gurikov P, Baudron V, Preibisch I, Milow B (2018) Review on the production of polysaccharide aerogel particles. Materials 11(11):2144

    Article  PubMed  PubMed Central  Google Scholar 

  15. Feng J, Su B-L, **a H, Zhao S, Gao C, Wang L, Hasan T (2021) Printed aerogels: Chemistry, processing, and applications. Chem Soc Rev 50:3842–3888

    Article  CAS  PubMed  Google Scholar 

  16. Baetens R, Jelle BP, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energy Build 43:761–769

    Article  Google Scholar 

  17. Talebi Z, Soltani P, Habibi N, Latifi F (2019) Silica aerogel/polyester blankets for efficient sound absorption in buildings. Constr Build Mater 220:76–89

    Article  CAS  Google Scholar 

  18. Wang C-T, Wu C-L, Chen I-C, Huang Y-H (2005) Humidity sensors based on silica nanoparticle aerogel thin films. Sens Actuators B 107:402–410

    Article  CAS  Google Scholar 

  19. Yang J, Li Y, Zheng Y, Xu Y, Zheng Z, Chen X, Liu W (2019) Versatile aerogels for sensors. Small 15(41):1902826

    Article  CAS  Google Scholar 

  20. Wang Y, Zhu H, Tu W, Su Y, Jiang F, Riffat S (2022) Sound absorption, structure and mechanical behavior of Konjac Glucomannan-based aerogels with addition of gelatin and wheat straw. Constr Build Mater 352:129052

    Article  CAS  Google Scholar 

  21. Qiao D, Lu J, Shi W, Li H, Zhang L, Jiang F, Zhang B (2022) Deacetylation enhances the properties of konjac glucomannan/agar composites. Carbohydr Polym 276:118776. https://doi.org/10.1016/j.carbpol.2021.118776

    Article  CAS  PubMed  Google Scholar 

  22. Wu K, Fang Y, Wu H, Wan Y, Qian H, Jiang F, Chen S (2021) Improving konjac glucomannan-based aerogels filtration properties by combining aerogel pieces in series with different pore size distributions. Int J Biol Macromol 166:1499–1507. https://doi.org/10.1016/j.ijbiomac.2020.11.029

    Article  CAS  PubMed  Google Scholar 

  23. Wu K, Wu H, Wang R, Yan X, Sun W, Liu Y, Chen S (2022) The use of cellulose fiber from office waste paper to improve the thermal insulation-related property of konjac glucomannan/starch aerogel. Ind Crops Prod 177:114424. https://doi.org/10.1016/j.indcrop.2021.114424

    Article  CAS  Google Scholar 

  24. Wang Y, **ang F, Wang W, Wang W, Su Y, Jiang F, Riffat S (2020) Sound absorption characteristics of KGM-based aerogel. Int J Low-Carbon Technol 15:450–457

    Article  Google Scholar 

  25. Thai QB, Chong RO, Nguyen PTT, Le DK, Le PK, Phan-Thien N, Duong HM (2020b) Recycling of waste tire fibers into advanced aerogels for thermal insulation and sound absorption applications. J Environ Chem Eng 8:104279. https://doi.org/10.1016/j.jece.2020.104279

    Article  CAS  Google Scholar 

  26. Wang G, Ma B, Yuan W, Luo J (2023) Acoustic and mechanical characterization of a novel polypropylene fibers based composite aerogel. Mater Lett 334:133696. https://doi.org/10.1016/j.matlet.2022.133696

    Article  CAS  Google Scholar 

  27. Tuan DT, Nguyen S, Do N, Thai N, Thai QB, Huynh H, Phan A (2020) Green aerogels from rice straw for thermal, acoustic insulation and oil spill cleaning applications. Mater Chem Phys 253:123363. https://doi.org/10.1016/j.matchemphys.2020.123363

    Article  CAS  Google Scholar 

  28. Golkar A, Nasirpour A, Keramat J, Desobry S (2015) Emulsifying properties of Angum gum (Amygdalus Scoparia Spach) conjugated to β-lactoglobulin through Maillard-type reaction. Int J Food Prop 18:2042–2055

    Article  CAS  Google Scholar 

  29. Balaghi S, Mohammadifar MA, Zargaraan A, Gavlighi HA, Mohammadi M (2011) Compositional analysis and rheological characterization of gum tragacanth exudates from six species of Iranian Astragalus. Food Hydrocolloids 25:1775–1784

    Article  CAS  Google Scholar 

  30. Abbasi S (2017) Challenges towards characterization and applications of a novel hydrocolloid: persian gum. Curr Opin Colloid Interface Sci 28:37–45

    Article  CAS  Google Scholar 

  31. Wang Y, Wu K, **ao M, Riffat SB, Su Y, Jiang F (2018) Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw. Carbohydr Polym 197:284–291. https://doi.org/10.1016/j.carbpol.2018.06.009

    Article  CAS  PubMed  Google Scholar 

  32. Wei G, Zhang J, Usuelli M, Zhang X, Liu B, Mezzenga R (2022) Biomass vs inorganic and plastic-based aerogels: structural design, functional tailoring, resource-efficient applications and sustainability analysis. Prog Mater Sci 125:100915. https://doi.org/10.1016/j.pmatsci.2021.100915

    Article  CAS  Google Scholar 

  33. Do NHN, Luu TP, Thai QB, Le DK, Chau NDQ, Nguyen ST, Duong HM (2020) Heat and sound insulation applications of pineapple aerogels from pineapple waste. Mater Chem Phys 242:122267. https://doi.org/10.1016/j.matchemphys.2019.122267

    Article  CAS  Google Scholar 

  34. Thai QB, Chong R, Nguyen P, Le D, Le P, Phan-Thien N, Duong H (2020a) Recycling of waste tire fibers into advanced aerogels for thermal insulation and sound absorption applications. J Environ Chem Eng 8:104279. https://doi.org/10.1016/j.jece.2020.104279

    Article  CAS  Google Scholar 

  35. Simón Herrero C, Peco N, Romero A, Valverde J, Sánchez-Silva L (2019) PVA/nanoclay/graphene oxide aerogels with enhanced sound absorption properties. Appl Acoust 156:40–45. https://doi.org/10.1016/j.apacoust.2019.06.023

    Article  Google Scholar 

  36. Lu Y, Yang D, She X, Yao X, Zhu G, Liu Y, Li J (2012) Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing–thawing in ionic liquid solution. J Mater Chem 22:13548–13557. https://doi.org/10.1039/C2JM31310C

    Article  CAS  Google Scholar 

  37. Choe H, Sung G, Kim J (2017) Chemical treatment of wood fibers to enhance the sound absorption coefficient of flexible polyurethane composite foams. Compos Sci Technol. 156https://doi.org/10.1016/j.compscitech.2017.12.024

    Article  Google Scholar 

  38. Singh A, Sujatmika E, Hong T, Durairaj R, Hamid H (2017) A review: characteristics of noise absorption material. J Phys: Conf Ser 908:012005. https://doi.org/10.1088/1742-6596/908/1/012005

    Article  Google Scholar 

  39. Shen J, Hu R, Jiang X, You F, Yao C, Yang H, Yu P (2022) Enhanced toughness and sound absorption performance of Bio-aerogel via Incorporation of Elastomer. Polymers 14:1344. https://www.mdpi.com/2073-4360/14/7/1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Silviana S, Prastiti EC, Hermawan F, Setyawan A (2022) Optimization of the sound absorption coefficient (SAC) from cellulose–silica aerogel using the box–Behnken Design. ACS Omega 7:41968–41980. https://doi.org/10.1021/acsomega.2c03734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article was derived from a thesis by Mahsa Khormi as a part of an M.Sc degree in the field of occupational health engineering. The authors are thankful to the Office of Vice President for Research in Environmental Technologies Research Center Ahvaz Jundishapur University of Medical Sciences, which supported the project with registration number ETRC-0112.

Author information

Authors and Affiliations

Authors

Contributions

H.R, A.S, M.K and B.F.D. design the study, M.K and B.F.D.wrote the main manuscript text and M.K prepared figures. All authors reviewed the manuscript.“

Corresponding author

Correspondence to Behzad Fouladi Dehaghi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorami, M., Rangkooy, H., Dehaghi, B.F. et al. Sound Absorption and Natural Polysaccharides: The case of Persian Gum and Tragacanth Gum. J Polym Environ 32, 1860–1867 (2024). https://doi.org/10.1007/s10924-023-03106-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03106-3

Keywords

Navigation