Log in

Exploration of Adsorption Efficiency Mechanism and Swelling Behavior of Novel Green Itaconic Acid Modified Gellan Gum Hydrogel Nanocomposite for the Removal of Noxious Dyes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Herein, a novel, ecologically sustainable hydrogel nanocomposite (GG-g-ITA/SA/PVA/MMT) was synthesized by incorporating GG-g-ITA with Alginate and Polyvinyl alcohol using MBA as crosslinker and MMT as nanofiller employed for the eradication of Azure B (AB) and Crystal Violet (CV) taken as probe-pollutants from the aquatic medium. The physiochemical facets of GG-g-ITA/SA/PVA/MMT were characterized by Fourier Transmission Infrared spectroscopy, X-ray diffraction, Transmission Electron microscopy, Brunauer–Emmett+Teller, Scanning electron microscopy-energy dispersive X-ray and elemental map**. The removal efficiency of the hydrogel nanocomposite was meticulously evaluated for isotherm, kinetic, and thermodynamic studies using the batch methodology. Isotherm outcomes concurred with the Langmuir isotherm model with laudable sorption capacities (232.55 mg/g for AB and 454.54 mg/g for CV) while the kinetics findings followed the pseudo-second-order model. Thermodynamics affirmed that the adsorption process was endothermic, feasible, and spontaneous. Van der Waals forces, hydrogen bonds, and electrostatic interactions constituted the potential adsorption mechanism. The adsorbent exhibited a swelling capacity of 96.7% within 60 min and revealed a high potency in recyclability with significant percent removal for both dyes in the fourth cycle. The co-existing ions have a minor influence on the removal efficiency of GG-g-ITA/SA/PVA/MMT. This green hydrogel nanocomposite can be regarded as a potential adsorbent for the mitigation of perilous dyes AB and CV with admirable sorption capacities to achieve a cleaner aquatic environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Available from corresponding author upon request.

References

  1. Heybet EN, Ugraskan V, Isik B, Yazici O (2021) Adsorption of methylene blue dye on sodium alginate/polypyrrole nanotube composites. Int J Biol Macromol 193:88–99. https://doi.org/10.1016/j.ijbiomac.2021.10.084

    Article  CAS  PubMed  Google Scholar 

  2. Sharma G, Kumar A, Chauhan C et al (2017) Pectin-crosslinked-guar gum/SPION nanocomposite hydrogel for adsorption of m-cresol and o-chlorophenol. Sustain Chem Pharm. https://doi.org/10.1016/j.scp.2017.10.003

    Article  Google Scholar 

  3. Gautam D, Hooda S (2020) Magnetic graphene oxide/chitin nanocomposites for efficient adsorption of methylene blue and crystal violet from aqueous solutions. J Chem Eng Data 65:4052–4062. https://doi.org/10.1021/acs.jced.0c00350

    Article  CAS  Google Scholar 

  4. Joseph J, Radhakrishnan RC, Johnson JK et al (2020) Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Mater Chem Phys 242:122488. https://doi.org/10.1016/j.matchemphys.2019.122488

    Article  CAS  Google Scholar 

  5. Ahmad I, Manzoor K, Aalam G et al (2022) Facile synthesis of l—tryptophan functionalized magnetic nanophotocatalyst supported by copper nanoparticles for selective reduction of organic pollutants and degradation of azo dyes. Catal Lett. https://doi.org/10.1007/s10562-022-04182-1

    Article  Google Scholar 

  6. Nuengmatcha P, Chanthai S, Mahachai R, Oh WC (2016) Sonocatalytic performance of ZnO/graphene/TiO2 nanocomposite for degradation of dye pollutants (methylene blue, texbrite BAC-L, texbrite BBU-L and texbrite NFW-L) under ultrasonic irradiation. Dye Pigment 134:487–497. https://doi.org/10.1016/j.dyepig.2016.08.006

    Article  CAS  Google Scholar 

  7. Parsa JB, Rezaei M, Soleymani AR (2009) Electrochemical oxidation of an azo dye in aqueous media investigation of operational parameters and kinetics. J Hazard Mater 168:997–1003. https://doi.org/10.1016/j.jhazmat.2009.02.134

    Article  CAS  PubMed  Google Scholar 

  8. Yang F, Sadam H, Zhang Y et al (2020) A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal. Chem Eng Sci 225:115845. https://doi.org/10.1016/j.ces.2020.115845

    Article  CAS  Google Scholar 

  9. Joshi S, Garg VK, Kataria N, Kadirvelu K (2019) Applications of Fe3O4@AC nanoparticles for dye removal from simulated wastewater. Chemosphere 236:124280. https://doi.org/10.1016/j.chemosphere.2019.07.011

    Article  CAS  PubMed  Google Scholar 

  10. Türgay O, Ersöz G, Atalay S et al (2011) The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Sep Purif Technol 79:26–33. https://doi.org/10.1016/j.seppur.2011.03.007

    Article  CAS  Google Scholar 

  11. Jiang M, Niu N, Chen L (2022) A template synthesized strategy on bentonite-doped lignin hydrogel spheres for organic dyes removal. Sep Purif Technol 285:120376. https://doi.org/10.1016/j.seppur.2021.120376

    Article  CAS  Google Scholar 

  12. Abbasi A, Khatoon F, Ikram S (2023) A review on remediation of dye adulterated system by ecologically innocuous biopolymers/natural gums-based composites. Int J Biol Macromol 231:123240. https://doi.org/10.1016/j.ijbiomac.2023.123240

    Article  CAS  PubMed  Google Scholar 

  13. Adam MR, Othman MHD, Kurniawan TA et al (2022) Advances in adsorptive membrane technology for water treatment and resource recovery applications: a critical review. J Environ Chem Eng 10:107633. https://doi.org/10.1016/j.jece.2022.107633

    Article  CAS  Google Scholar 

  14. Yu LL, Jiang LN, Wang S et al (2018) Pectin microgel particles as high adsorption rate material for methylene blue: performance, equilibrium, kinetic, mechanism and regeneration studies. Int J Biol Macromol 112:383–389. https://doi.org/10.1016/J.IJBIOMAC.2018.01.193

    Article  CAS  PubMed  Google Scholar 

  15. Zia Z, Hartland A, Mucalo MR (2020) Use of low-cost biopolymers and biopolymeric composite systems for heavy metal removal from water. Int J Environ Sci Technol 17:4389–4406. https://doi.org/10.1007/s13762-020-02764-3

    Article  CAS  Google Scholar 

  16. Yaashikaa PR, Senthil Kumar P, Karishma S (2022) Review on biopolymers and composites—evolving material as adsorbents in removal of environmental pollutants. Environ Res 212:113114. https://doi.org/10.1016/j.envres.2022.113114

    Article  CAS  PubMed  Google Scholar 

  17. Zhao L, Du J, Yang X et al (2021) Ultrahigh adsorption capacity of acrylic acid-grafted xanthan gum hydrogels for rhodamine b from aqueous solution. J Chem Eng Data 66:1264–1272. https://doi.org/10.1021/acs.jced.0c00850

    Article  CAS  Google Scholar 

  18. Ahmad S, Manzoor K, Purwar R, Ikram S (2020) Morphological and swelling potential evaluation of Moringa oleifera gum/poly(vinyl alcohol) hydrogels as a superabsorbent. ACS Omega 5:17955–17961. https://doi.org/10.1021/acsomega.0c01023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Çınar S, Kaynar ÜH, Aydemir T et al (2017) An efficient removal of RB5 from aqueous solution by adsorption onto nano-ZnO/Chitosan composite beads. Int J Biol Macromol 96:459–465. https://doi.org/10.1016/j.ijbiomac.2016.12.021

    Article  CAS  PubMed  Google Scholar 

  20. Mahto A, Mishra S (2021) Guar gum grafted itaconic acid: a solution for different waste water treatment. J Polym Environ 29:3525–3538. https://doi.org/10.1007/s10924-021-02125-2

    Article  CAS  Google Scholar 

  21. Kulal P, Krishnappa PB, Badalamoole V (2022) Development of gum acacia based magnetic nanocomposite adsorbent for wastewater treatment. Polym Bull 79:9457–9484. https://doi.org/10.1007/s00289-021-03909-1

    Article  CAS  Google Scholar 

  22. Krishnappa PB, Kodoth AK, Kulal P, Badalamoole V (2023) Effective removal of ionic dyes from aqueous media using modified karaya gum–PVA semi-interpenetrating network system. Polym Bull 80:2553–2584. https://doi.org/10.1007/s00289-022-04169-3

    Article  CAS  Google Scholar 

  23. Kulal P, Badalamoole V (2020) Magnetite nanoparticle embedded pectin-graft-poly(N-hydroxyethylacrylamide) hydrogel: evaluation as adsorbent for dyes and heavy metal ions from waste water. Int J Biol Macromol 156:1408–1417. https://doi.org/10.1016/j.ijbiomac.2019.11.181

    Article  CAS  PubMed  Google Scholar 

  24. Kulal P, Badalamoole V (2020) Efficient removal of dyes and heavy metal ions from waste water using gum ghatti – graft – poly(4-acryloylmorpholine) hydrogel incorporated with magnetite nanoparticles. J Environ Chem Eng 8:104207. https://doi.org/10.1016/j.jece.2020.104207

    Article  CAS  Google Scholar 

  25. Kulal P, Badalamoole V (2020) Hybrid nanocomposite of kappa-carrageenan and magnetite as adsorbent material for water purification. Int J Biol Macromol 165:542–553. https://doi.org/10.1016/j.ijbiomac.2020.09.202

    Article  CAS  PubMed  Google Scholar 

  26. Subhan H, Alam S, Shah LA et al (2021) Sodium alginate grafted poly(N-vinyl formamide-co-acrylic acid)-bentonite clay hybrid hydrogel for sorptive removal of methylene green from wastewater. Colloids Surf Physicochem Eng Asp 611:125853. https://doi.org/10.1016/j.colsurfa.2020.125853

    Article  CAS  Google Scholar 

  27. Choudhary S, Sharma K, Kumar V et al (2020) Microwave-assisted synthesis of gum gellan-cl-poly(acrylic-co- methacrylic acid) hydrogel for cationic dyes removal. Polym Bull 77:4917–4935. https://doi.org/10.1007/s00289-019-02998-3

    Article  CAS  Google Scholar 

  28. Abou Taleb MF, Abou El Fadl FI, Albalwi H (2021) Adsorption of toxic dye in wastewater onto magnetic NVP/CS nanocomposite hydrogels synthesized using gamma radiation. Sep Purif Technol 266:118551. https://doi.org/10.1016/j.seppur.2021.118551

    Article  CAS  Google Scholar 

  29. Preetha BK, Vishalakshi B (2020) Karaya gum-graft-poly(N,N’-dimethylacrylamide) gel: a pH responsive potential adsorbent for sequestration of cationic dyes. J Environ Chem Eng 8:103608. https://doi.org/10.1016/j.jece.2019.103608

    Article  CAS  Google Scholar 

  30. Mahdavinia GR, Aghaie H, Sheykhloie H et al (2013) Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydr Polym 98:358–365. https://doi.org/10.1016/J.CARBPOL.2013.05.096

    Article  CAS  PubMed  Google Scholar 

  31. Taşdelen B, Çifçi Dİ, Meriç S (2021) Preparation and characterization of chitosan/AMPS/kaolinite composite hydrogels for adsorption of methylene blue. Polym Bull. https://doi.org/10.1007/s00289-021-03970-w

    Article  Google Scholar 

  32. Peighambardoust SJ, Aghamohammadi-Bavil O, Foroutan R, Arsalani N (2020) Removal of malachite green using carboxymethyl cellulose-g-polyacrylamide/montmorillonite nanocomposite hydrogel. Int J Biol Macromol 159:1122–1131. https://doi.org/10.1016/j.ijbiomac.2020.05.093

    Article  CAS  PubMed  Google Scholar 

  33. Safarzadeh H, Peighambardoust SJ, Mousavi SH et al (2022) Adsorption of methyl violet dye from wastewater using poly(methacrylic acid-co-acrylamide)/bentonite nanocomposite hydrogels. J Polym Res. https://doi.org/10.1007/s10965-022-02956-0

    Article  Google Scholar 

  34. Han D, Zhao H, Gao L et al (2021) Preparation of carboxymethyl chitosan/phytic acid composite hydrogels for rapid dye adsorption in wastewater treatment. Colloids Surf Physicochem Eng Asp 628:127355. https://doi.org/10.1016/j.colsurfa.2021.127355

    Article  CAS  Google Scholar 

  35. Batouti M, El, Sadik W, Eldemerdash AG et al (2022) New and innovative microwave-assisted technology for synthesis of guar gum-grafted acrylamide hydrogel superabsorbent for the removal of acid red 8 dye from industrial wastewater. Polym Bull 80:4965–4989. https://doi.org/10.1007/s00289-022-04254-7

    Article  CAS  Google Scholar 

  36. Shahinpour A, Tanhaei B, Ayati A et al (2022) Binary dyes adsorption onto novel designed magnetic clay-biopolymer hydrogel involves characterization and adsorption performance: kinetic, equilibrium, thermodynamic, and adsorption mechanism. J Mol Liq 366:120303. https://doi.org/10.1016/j.molliq.2022.120303

    Article  CAS  Google Scholar 

  37. Karthika JS, Vishalakshi B (2014) Microwave-assisted synthesis and characterization of poly(itaconic acid) grafted gellan gum. Int J Polym Anal Charact 19:95–106. https://doi.org/10.1080/1023666X.2014.872815

    Article  CAS  Google Scholar 

  38. Abbasi A, Ikram S (2022) Fabrication of a novel green bio-composite for sequestration of Victoria blue from aquatic medium: isotherm, kinetics, and thermodynamic investigations. Chem Phys Lett 800:139665. https://doi.org/10.1016/j.cplett.2022.139665

    Article  CAS  Google Scholar 

  39. Kulal P, Badalamoole V (2021) Evaluation of gum ghatti-g-poly(itaconic acid) magnetite nanocomposite as an adsorbent material for water purification. Int J Biol Macromol 193:2232–2242. https://doi.org/10.1016/j.ijbiomac.2021.11.055

    Article  CAS  PubMed  Google Scholar 

  40. Sharma S, Sharma G, Kumar A et al (2022) Adsorption of cationic dyes onto carrageenan and itaconic acid-based superabsorbent hydrogel: synthesis, characterization and isotherm analysis. J Hazard Mater 421:126729. https://doi.org/10.1016/j.jhazmat.2021.126729

    Article  CAS  PubMed  Google Scholar 

  41. Tafjord J, Rytter E, Holmen A et al (2021) Transition-metal nanoparticle catalysts anchored on carbon supports via short-chain alginate linkers. ACS Appl Nano Mater 4:3900–3910. https://doi.org/10.1021/acsanm.1c00294

    Article  CAS  Google Scholar 

  42. Solberg A, Mo IV, Aachmann FL et al (2021) Alginate-based diblock polymers: preparation, characterization and Ca-induced self-assembly. Polym Chem 12:5412–5425. https://doi.org/10.1039/d1py00727k

    Article  CAS  Google Scholar 

  43. Wang W, Zhao Y, Bai H et al (2018) Methylene blue removal from water using the hydrogel beads of poly(vinyl alcohol)-sodium alginate-chitosan-montmorillonite. Carbohydr Polym 198:518–528. https://doi.org/10.1016/j.carbpol.2018.06.124

    Article  CAS  PubMed  Google Scholar 

  44. Khatooni H, Peighambardoust SJ, Foroutan R et al (2023) Adsorption of methylene blue using sodium carboxymethyl cellulose-g-poly (acrylamide-co-methacrylic acid)/Cloisite 30B nanocomposite hydrogel. J Polym Environ 31:297–311. https://doi.org/10.1007/s10924-022-02623-x

    Article  CAS  Google Scholar 

  45. Khan SA, Abbasi N, Hussain D, Khan TA (2022) Sustainable mitigation of paracetamol with a novel dual-functionalized pullulan/kaolin hydrogel nanocomposite from simulated wastewater. Langmuir 38:8280–8295. https://doi.org/10.1021/acs.langmuir.2c00702

    Article  CAS  PubMed  Google Scholar 

  46. Khushbu JR (2023) Sodium alginate and chitosan based amphoteric nanocomposites modified with graphene oxide and bentonite as an efficient adsorbent for both anionic and cationic dyes. J Polym Environ 31:264–286. https://doi.org/10.1007/s10924-022-02626-8

    Article  CAS  Google Scholar 

  47. Radoor S, Karayil J, Parameswaranpillai J, Siengchin S (2020) Removal of anionic dye Congo red from aqueous environment using polyvinyl alcohol/sodium alginate/ZSM-5 zeolite membrane. Sci Rep 10:1–15. https://doi.org/10.1038/s41598-020-72398-5

    Article  Google Scholar 

  48. Khan SA, Siddiqui MF, Khan TA (2020) Synthesis of poly(methacrylic acid)/montmorillonite hydrogel nanocomposite for efficient adsorption of amoxicillin and diclofenac from aqueous environment: kinetic, isotherm, reusability, and thermodynamic investigations. ACS Omega 5:2843–2855. https://doi.org/10.1021/acsomega.9b03617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zauro SA, Vishalakshi B (2017) Amphoteric gellan gum-based terpolymer–montmorillonite composite: synthesis, swelling, and dye adsorption studies. Int J Ind Chem 8:345–362. https://doi.org/10.1007/s40090-017-0126-z

    Article  CAS  Google Scholar 

  50. Adrover A, Paolicelli P, Petralito S et al (2019) Gellan gum/laponite beads for the modified release of drugs: experimental and modeling study of gastrointestinal release. Pharmaceutics. https://doi.org/10.3390/PHARMACEUTICS11040187

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sullad AG, Gaddi AV, Nemagouda RB et al (2017) Graft copolymerization of itaconic acid onto guar gum using ceric ammonium sulfate as an initiator and its characterizations. Polym Bull 74:1863–1878. https://doi.org/10.1007/s00289-016-1809-x

    Article  CAS  Google Scholar 

  52. Patel AK, Bajpai R, Keller JM (2014) On the crystallinity of PVA/palm leaf biocomposite using DSC and XRD techniques. Microsyst Technol 20:41–49. https://doi.org/10.1007/s00542-013-1882-0

    Article  CAS  Google Scholar 

  53. Brza MA, Aziz SB, Anuar H, Ali F (2020) Structural, ion transport parameter and electrochemical properties of plasticized polymer composite electrolyte based on PVA: a novel approach to fabricate high performance EDLC devices. Polym Test 91:106813. https://doi.org/10.1016/j.polymertesting.2020.106813

    Article  CAS  Google Scholar 

  54. Larosa C, Salerno M, Silva J et al (2018) Characterisation of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses. Int J Biol Macromol 115:900–906. https://doi.org/10.1016/j.ijbiomac.2018.04.138

    Article  CAS  PubMed  Google Scholar 

  55. Uddin MK, Mashkoor F, AlArifi IM, Nasar A (2021) Simple one-step synthesis process of novel MoS2@bentonite magnetic nanocomposite for efficient adsorption of crystal violet from aqueous solution. Mater Res Bull 139:111279. https://doi.org/10.1016/j.materresbull.2021.111279

    Article  CAS  Google Scholar 

  56. Pashaei-Fakhri S, Peighambardoust SJ, Foroutan R et al (2021) Crystal violet dye sorption over acrylamide/graphene oxide bonded sodium alginate nanocomposite hydrogel. Chemosphere 270:129419. https://doi.org/10.1016/j.chemosphere.2020.129419

    Article  CAS  PubMed  Google Scholar 

  57. Preetha BK, Vishalakshi B (2020) Microwave assisted synthesis of karaya gum based montmorillonite nanocomposite: characterisation, swelling and dye adsorption studies. Int J Biol Macromol 154:739–750. https://doi.org/10.1016/j.ijbiomac.2020.03.107

    Article  CAS  PubMed  Google Scholar 

  58. Abu Elella MH, Sabaa MW, ElHafeez EA, Mohamed RR (2019) Crystal violet dye removal using crosslinked grafted xanthan gum. Int J Biol Macromol 137:1086–1101. https://doi.org/10.1016/j.ijbiomac.2019.06.243

    Article  CAS  PubMed  Google Scholar 

  59. Pourjavadi A, Abedin-Moghanaki A (2016) Ultrafast and efficient removal of cationic dyes using a magnetic nanocomposite based on functionalized cross-linked poly(methylacrylate). React Funct Polym 105:95–102. https://doi.org/10.1016/j.reactfunctpolym.2016.05.016

    Article  CAS  Google Scholar 

  60. Hussain D, Khan SA, Khan TA, Alharthi SS (2022) Efficient liquid phase confiscation of nile blue using a novel hybrid nanocomposite synthesized from guar gum-polyacrylamide and erbium oxide. Sci Rep 12:1–17. https://doi.org/10.1038/s41598-022-18591-0

    Article  CAS  Google Scholar 

  61. Khan SA, Siddiqui MF, Khan TA (2020) Ultrasonic-assisted synthesis of polyacrylamide/bentonite hydrogel nanocomposite for the sequestration of lead and cadmium from aqueous phase: equilibrium, kinetics and thermodynamic studies. Ultrason Sonochem 60:104761. https://doi.org/10.1016/j.ultsonch.2019.104761

    Article  CAS  PubMed  Google Scholar 

  62. Siddiqui MF, Khan TA (2020) Gelatin-polyvinyl alcohol/lanthanum oxide composite: a novel adsorbent for sequestration of arsenic species from aqueous environment. J Water Process Eng 34:101071. https://doi.org/10.1016/j.jwpe.2019.101071

    Article  Google Scholar 

  63. Hu Q, Zhang Z (2019) Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: a theoretical analysis. J Mol Liq 277:646–648. https://doi.org/10.1016/j.molliq.2019.01.005

    Article  CAS  Google Scholar 

  64. Wasim M, Sabir A, Shafiq M, Khan RU (2022) Mussel inspired surface functionalization of polyamide membranes for the removal and adsorption of crystal violet dye. Dye Pigment 206:110606. https://doi.org/10.1016/j.dyepig.2022.110606

    Article  CAS  Google Scholar 

  65. Foroutan R, Peighambardoust SJ, Peighambardoust SH et al (2021) Adsorption of crystal violet dye using activated carbon of lemon wood and activated carbon/Fe3O4 magnetic. Molecules 26:1–19

    Article  Google Scholar 

  66. Sulyman M, Kucinska-lipka J, Sienkiewicz M (2021) Development, characterization and evaluation of composite adsorbent for the adsorption of crystal violet from aqueous solution : isotherm, kinetics, and thermodynamic studies. Arab J Chem 14:103115. https://doi.org/10.1016/j.arabjc.2021.103115

    Article  CAS  Google Scholar 

  67. Dabagh A, Bagui A, Abali M et al (2020) Adsorption of crystal violet from aqueous solution onto eco-friendly native Carpobrotus edulis plant. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.10.349

    Article  Google Scholar 

  68. Khan FA, Ahad A, Shah SS, Farooqui M (2021) Adsorption of crystal violet dye using Platanus orientalis (Chinar tree) leaf powder and its biochar: equilibrium, kinetics and thermodynamics study. Int J Environ Anal Chem 00:1–21. https://doi.org/10.1080/03067319.2021.1931854

    Article  CAS  Google Scholar 

  69. Paquin F, Rivnay J, Salleo A et al (2015) Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. J Mater Chem C 3:10715–10722. https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  70. Alipanahpour Dil E, Ghaedi M, Asfaram A, et al (2019) Efficient adsorption of Azure B onto CNTs/Zn: ZnO@Ni2P-NCs from aqueous solution in the presence of ultrasound wave based on multivariate optimization. J Ind Eng Chem 74:55–62. https://doi.org/10.1016/j.jiec.2018.12.050

    Article  CAS  Google Scholar 

  71. Guo J, Wang J, Zheng G, Jiang X (2019) Optimization of the removal of reactive golden yellow SNE dye by cross-linked cationic starch and its adsorption properties. J Eng Fiber Fabr. https://doi.org/10.1177/1558925019865260

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the UGC for providing fellowship and Jamia Millia Islamia University for providing research facility. The corresponding author Prof. Saiqa Ikram further extends her gratitude to the Ministry of Human Resources Development, Government of India, for sanctioning a Major Project under the Scheme for Promotion of Academic & Research Collaboration (MHRD-SPARC#P672 & MHRD-SPARC#P2992) and also Department of Science and Technology (DST) for Indo-Egypt Joint project (DST/INT/Egypt/P-05/2019) for financial supports.

Funding

No funding is available for this research.

Author information

Authors and Affiliations

Authors

Contributions

AA: conceptualization, writing—original draft, methodology, investigation, data curation, formal analysis; IA: data curation, formal analysis; SI: validation, writing—review and editing, resources, supervision.

Corresponding author

Correspondence to Saiqa Ikram.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not required.

Consent to Participant

All authors actively participated in this work.

Consent for Publication

Approved by all named authors.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1609.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Ahmad, I. & Ikram, S. Exploration of Adsorption Efficiency Mechanism and Swelling Behavior of Novel Green Itaconic Acid Modified Gellan Gum Hydrogel Nanocomposite for the Removal of Noxious Dyes. J Polym Environ 32, 1684–1705 (2024). https://doi.org/10.1007/s10924-023-03058-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03058-8

Keywords

Navigation