Log in

Eco-friendly Copolymer Grafted Loess Particles for Rapid and Efficient Removal Pollutants in Wastewater

  • Research
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Loess (Lo) is a resource-rich natural mineral material mainly composed of clay and other mineral components, which has the advantages of low price and large specific surface area. The grafting polymer is an effective strategy for improving the adsorption effect of Lo. In this paper, using KH-570 as a modifier, N-vinylpyrrolidone (NVP), maleic anhydride (MA), vinyl acetate (VAc) and acrylic acid (AA) as functional monomers, eco-friendly copolymers (PMN and PMVA) were grafted onto surface of loess particles (LoPs), which afforded two kinds of eco-friendly copolymer grafted loess particles (LoP-PMN and LoP-PMVA). After being characterized by FTIR, SEM, XRD, TG and BET, their adsorption performance were investigated. It was found that LoP-PMN and LoP-PMVA could rapidly adsorb pollutants within 5 min, which the removal of methylene blue and Cu2+ got to 85.22% and 86.01%, respectively. It could also adsorb other pollutants, such as methylene blue, rhodamine B, basic fuchsin, malachite green, Cu2+ and Pb2+ for comprehensive application in organic dyes and heavy metal ions removal. It showed that LoP-PMN and LoP-PMVA were single-layer and multi-layer adsorption, respectively. Thus, the prepared eco-friendly copolymer grafted loess particles exhibited significant potential and value in the field of wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kiani A, Ahmadloo M, Moazzen M, Shariatifar N, Shahsavari S, Arabameri M, Hasani MM, Azari A, Abdel-Wahhab MA (2021) Monitoring of polycyclic aromatic hydrocarbons and probabilistic health risk assessment in yogurt and butter in Iran. Food Sci Nutr 9:2114–2128. https://doi.org/10.1002/fsn3.2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Faraji-Khiavi F, Jalilian H, Heydari S, Sadeghi R, Saduqi M, Razavinasab SA, Heidari-Jamebozorgi M (2022) Utilization of health services among the elderly in Iran during the COVID-19 outbreak: a cross-sectional study. Health Sci Rep 5:e839. https://doi.org/10.1002/hsr2.839

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nasiri A, Tamaddon F, Mosslemin MH, Amiri Gharaghani M, Asadipour A (2019) Magnetic nano-biocomposite CuFe2O4 @methylcellulose (MC) prepared as a new nano-photocatalyst for degradation of ciprofloxacin from aqueous solution. Environ Health Eng Manag 6:41–51. https://doi.org/10.15171/ehem.2019.05

    Article  CAS  Google Scholar 

  4. Hashemi SY, Yegane Badi M, Pasalari H, Azari A, Arfaeinia H, Kiani A (2020) Degradation of ceftriaxone from aquatic solution using a heterogeneous and reusable O3/UV/Fe3O4@TiO2 systems: operational factors, kinetics and mineralization. Int J Environ Anal Chem 18:6904–6920. https://doi.org/10.1080/03067319.2020.1817909

    Article  CAS  Google Scholar 

  5. Al-husseiny RA, Kareem SL, Naje AS, Ebrahim SE (2023) Effect of green synthesis of Fe3O4 nanomaterial on the removal of cefixime from aqueous solution. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-023-03921-7

    Article  Google Scholar 

  6. **ang Q, Yu H, Chu HL, Hu MK, Xu T, Xu XY, He ZY (2022) The potential ecological risk assessment of soil heavy metals using self-organizing map. Sci Total Environ 843:156978. https://doi.org/10.1016/j.scitotenv.2022.156978

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Hao DL, Liang YL (2022) Adsorption of Cu2+, Cd2+ and Pb2+ in wastewater by modified chitosan hydrogel. Environ Technol 43:876–884. https://doi.org/10.1080/09593330.2020.1807612

    Article  CAS  PubMed  Google Scholar 

  8. Yeganebadi M, Azari A, Esrafili A, Ahmadi E, Gholami M (2015) Performance evaluation of magnetized multiwall carbon nanotubes by iron oxide nanoparticles in removing fluoride from aqueous solution. J Mazandaran Univ Med Sci 25:128–142

    Google Scholar 

  9. Hussein Maad A, Ahmed Dooraid N, Kadhim Ahmed S, Kareem Sabreen L (2023) Effective W/O emulsion performance to extract the antibiotic co-trimoxazole from wastewater. Desalin Water Treat 282:237–245. https://doi.org/10.5004/dwt.2023.29182

    Article  CAS  Google Scholar 

  10. Islam T, Repon MR, Islam T, Sarwar Z, Rahman MM (2023) Impact of textile dyes on health and ecosystem: a review of structure, causes, and potential solutions. Environ Sci Pollut Res Int 30:9207–9242. https://doi.org/10.1007/s11356-022-24398-3

    Article  CAS  PubMed  Google Scholar 

  11. Alnasrawi Fatin AM, Kareem Sabreen L, Mohammed Saleh LA (2022) Adsorption of methylene blue from aqueous solution using different types of activated carbon. J Appl Water Eng Res 1:1–11. https://doi.org/10.1080/23249676.2022.2120918

    Article  Google Scholar 

  12. Kareem S, Muheisen Al Mrayan AZ, Al-husseiny RA (2022) Human health risk assessment of heavy metals contaminated soil at Al-Nasiriyah City, Iraq. Egypt J Chem 65:1–3

    Google Scholar 

  13. Al-Wasidi AS, Naglah AM, Saad FA, Abdelrahman EA (2022) Modification of silica nanoparticles with 4,6-diacetylresorcinol as a novel composite for the efficient removal of Pb (II), Cu (II), Co (II), and Ni (II) ions from aqueous media. J Inorg Organomet Polym 32:2332–2344. https://doi.org/10.1007/s10904-022-02282-4

    Article  CAS  Google Scholar 

  14. Azari A, Abtahi M, Dobaradaran S, Saeedi R, Yari AR, Vaziri MH, Razavinasab SA, Malakoutian M, Yaghmaeain K, Jaafarzadeh N (2023) Polycyclic aromatic hydrocarbons in high-consumption soft drinks and non-alcoholic beers in Iran: monitoring, monte carlo simulations and human health risk assessment. Microchem J 191:108791. https://doi.org/10.1016/j.microc.2023.108791

    Article  CAS  Google Scholar 

  15. Al-Anbari MA, Altaee SA, Kareem SL (2022) Using life cycle assessment (LCA) in appraisal sustainability indicators of Najaf wastewater treatment plant. Egypt J Chem 65:1–6

    Google Scholar 

  16. Azari A, Nabizadeh R, Mahvi AH, Nasseri S (2021) Magnetic multi-walled carbon nanotubes-loaded alginate for treatment of industrial dye manufacturing effluent: adsorption modelling and process optimisation by central composite face-central design. Int J Environ Anal Chem 103:1509–1529. https://doi.org/10.1080/03067319.2021.1877279

    Article  CAS  Google Scholar 

  17. Pasalari H, Ghaffari HR, Mahvi AH, Pourshabanian M, Azari A (2017) Activated carbon derived from date stone as natural adsorbent for phenol removal from aqueous solution. Desalin Water Treat 72:406–417. https://doi.org/10.5004/dwt.2017.20686

    Article  CAS  Google Scholar 

  18. Yang SC, Sun KF, Liu JL, Wei N, Zhao X (2022) Comparison of pollution levels, biomagnification capacity, and risk assessments of heavy metals in nearshore and offshore regions of the South China Sea. Int J Environ Res Public Health 19:12248. https://doi.org/10.3390/ijerph191912248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zazouli MA, Azari A, Dehghan S, Malekkolae RS (2016) Adsorption of methylene blue from aqueous solution onto activated carbons developed from eucalyptus bark and Crataegus oxyacantha core. Water Sci Technol 74:2021–2035. https://doi.org/10.2166/wst.2016.287

    Article  CAS  PubMed  Google Scholar 

  20. Azari A, Nabizadeh R, Mahvi AH, Nasseri S (2020) Integrated Fuzzy AHP-TOPSIS for selecting the best color removal process using carbon-based adsorbent materials: multi-criteria decision making vs. systematic review approaches and modeling of textile wastewater treatment in real conditions. Int J Environ Anal Chem 102:7329–7344. https://doi.org/10.1080/03067319.2020.1828395

    Article  CAS  Google Scholar 

  21. Heiderscheidt E, Leiviska T, Campos Lopez F, Tesfamariam A, Postila H (2022) Suitability of natural and chemically modified peat as a sorbent material for mining water purification in small-scale pilot systems. Environ Technol 43:971–982. https://doi.org/10.1080/09593330.2020.1812007

    Article  CAS  PubMed  Google Scholar 

  22. Liu C, Jiang XX, Wang XY, Wang Q, Li LX, Zhang FG, Liang WY (2020) Magnetic polyphenol nanocomposite of Fe3O4/SiO2/PP for Cd (II) adsorption from aqueous solution. Environ Technol 43:935–948. https://doi.org/10.1080/09593330.2020.1811394

    Article  CAS  PubMed  Google Scholar 

  23. Yeganebadi M, Esrafili A, Rezaei Kalantary R, Azari A, Ahmadi E, Gholami M (2015) Removal of diethyl phthalate from aqueous solution using persulfate-based (UV/Na2S2O8/Fe2+) advanced oxidation process. J Mazandaran Univ Med Sci 25:122–135

    Google Scholar 

  24. Kouhpayeh A, Moazzen M, JahedKhaniki G, Dobaradaran S, Shariatifar N, Ahmadloo M, Azari A, Nazmara S, Kiani A, Salari M (2016) Extraction and determination of phthalate esters (PAEs) in doogh. J Mazandaran Univ Med Sci 26:257–267

    Google Scholar 

  25. Park B, Kim J, Ghoreishian SM, Rethinasabapathy M, Huh YS, Kang S (2022) Generation of multi-functional core-shell adsorbents: simultaneous adsorption of cesium, strontium and rhodamine B in aqueous solution. J Ind Eng Chem 112:201–209. https://doi.org/10.1016/j.jiec.2022.05.014

    Article  CAS  Google Scholar 

  26. Aljeboree AM, Radia ND, Jasim LS, Alwarthan AA, Khadhim MM, Salman AW, Alkaim AF (2022) Synthesis of a new nanocomposite with the core TiO2/hydrogel: brilliant green dye adsorption, isotherms, kinetics, and DFT studies. J Ind Eng Chem 109:475–485. https://doi.org/10.1016/j.jiec.2022.02.031

    Article  CAS  Google Scholar 

  27. Piao XX, Guo HX, Cao YZ, Wang Z, ** CD (2022) Preparation and exploration of multifunctional wood coating based on an interpenetrating network system of CO2-polyurethane and natural bio-based benzoxazine. Colloid Surf A 649:129437. https://doi.org/10.1016/j.colsurfa.2022.129437

    Article  CAS  Google Scholar 

  28. Zhang XL, Yuan N, Xu S, Li Y, Wang QB (2022) Efficient adsorptive elimination of organic pollutants from aqueous solutions on ZIF-8/MWCNTs-COOH nanoadsorbents: adsorption kinetics, isotherms, and thermodynamic study. J Ind Eng Chem 111:155–167. https://doi.org/10.1016/j.jiec.2022.03.048

    Article  CAS  Google Scholar 

  29. Futalan CM, Wan MW (2022) Fixed-bed adsorption of lead from aqueous solution using chitosan-coated bentonite. Int J Environ Res Public Health 19:2597. https://doi.org/10.3390/ijerph19052597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abdel-Magied AF, Ashour RM, Fu L, Dowaidar M, **a W, Forsberg K, Abdelhamid HN (2022) Magnetic metal-organic frameworks for efficient removal of cadmium (II), and lead (II) from aqueous solution. J Environ Chem Eng 10:107467. https://doi.org/10.1016/j.jece.2022.107467

    Article  CAS  Google Scholar 

  31. Shen Y, Yan HY, Wang RM, Song PF, He YF (2021) Review: Progress with functional materials based on Loess particles. Clay Clay Miner 69:301–314. https://doi.org/10.1007/s42860-021-00123-y

    Article  ADS  CAS  Google Scholar 

  32. Tang X, Li Z, Chen Y (2008) Behaviour and mechanism of Zn (II) adsorption on Chinese loess at dilute slurry concentrations. J Chem Technol Biotechnol 83:673–682. https://doi.org/10.1002/jctb.1848

    Article  CAS  Google Scholar 

  33. Zou W, Fang Z, Huang J, Zhang Z (2019) Effect of salinity on adsorption of sodium hexametaphosphate and hydrophobically-modified polyacrylamide flocculant on kaolinite Al-OH surface. Colloid Surf A 585:124055. https://doi.org/10.1016/j.colsurfa.2019.124055

    Article  CAS  Google Scholar 

  34. Soni VK, Roy T, Dhara S, Choudhary G, Sharma PR, Sharma RK (2018) On the investigation of acid and surfactant modification of natural clay for photocatalytic water remediation. J Mater Sci 53:10095–10110. https://doi.org/10.1007/s10853-018-2308-2

    Article  ADS  CAS  Google Scholar 

  35. Bee SL, Abdullah MAA, Mamat M, Bee ST, Sin LT, Hui D, Rahmat AR (2017) Characterization of silylated modified clay nanoparticles and its functionality in PMMA. Compos Part B-Eng 110:83–95. https://doi.org/10.1016/j.compositesb.2016.10.084

    Article  CAS  Google Scholar 

  36. Lan TG, Xu L, Lu SF (2022) Experimental study on the water retention behavior of intact loess under mechanical wetting and hydraulic wetting. Acta Geotech 18:1125–1134. https://doi.org/10.1007/s11440-022-01593-7

    Article  Google Scholar 

  37. Mao SS, Gao ML (2021) Functional organoclays for removal of heavy metal ions from water: a review. J Mol Liq 334:116143. https://doi.org/10.1016/j.molliq.2021.116143

    Article  CAS  Google Scholar 

  38. Tang FQ, Gao D, Wang L, He YF, Song PF, Wang RM (2020) Preparation of grafting copolymer of acrylic acid onto loess surface and its adsorption behavior. Water Sci Technol 82:673–682. https://doi.org/10.2166/wst.2020.359

    Article  CAS  PubMed  Google Scholar 

  39. Zhang MX, Zhu HX, ** BD, Tian YX, Sun XJ, Zhang HX, Wu BB (2022) Surface hydrophobic modification of biochar by silane coupling agent KH-570. Processes 10:301. https://doi.org/10.3390/pr10020301

    Article  CAS  Google Scholar 

  40. Tang F, Yang H, Chen H, Zhou M, Huang P, He Y, Song P, Wang R (2022) Preparation of ZrLDH-based 3D microspheres for phosphate recovery. J Environ Chem Eng 10:108484. https://doi.org/10.1016/j.jece.2022.108484

    Article  CAS  Google Scholar 

  41. Pereira C, Da Moura CS, Carrado A, Falentin-Daudre C (2022) Ultraviolet irradiation modification of poly-(methyl methacrylate) titanium grafted surface for biological purpose. Colloid Surf A 655:130295. https://doi.org/10.1016/j.colsurfa.2022.130295

    Article  CAS  Google Scholar 

  42. Ge X, Chang M, Jiang W, Zhang B, Bulin C (2020) Selective location of kaolin and effects of maleic anhydride in kaolin/poly(ε-caprolactone)/poly (lactic acid) composites. Appl Clay Sci 189:105524. https://doi.org/10.1016/j.clay.2020.105524

    Article  CAS  Google Scholar 

  43. Yang M, Liu B, Gao G, Liu X, Liu F (2010) Poly (maleic anhydride-co-acrylic acid)/poly (ethylene glycol) hydrogels with pH- and ionic-strength-responses. Chin J Polym Sci 28:951–959. https://doi.org/10.1007/s10118-010-9191-x

    Article  CAS  Google Scholar 

  44. Wang Y, Wang M, Bai L, Zhang L, Cheng Z, Zhu X (2020) Facile synthesis of poly (N-vinyl pyrrolidone) block copolymers with “more-activated” monomers by using photoinduced successive RAFT polymerization. Polym Chem 11:2080–2088. https://doi.org/10.1039/c9py01763a

    Article  CAS  Google Scholar 

  45. Nandy K, Srivastava A, Afgan S, Deepak Kumar R, Kumar Rawat A, Singh RK (2020) The benzyl ethyl trithiocarbonate mediated control synthesis of a block copolymer containing N-vinyl-Pyrrolidone by RAFT methodology: Influence of polymer composition on cell cytotoxicity and cell viability. Eur Polym J 122:109387. https://doi.org/10.1016/j.eurpolymj.2019.109387

    Article  CAS  Google Scholar 

  46. Enescu D, Pastrana LM (2020) The effect of simultaneous radical polymerization of Poly (N-vinyl-pyrrolidone)/α, ω-Bis (methacryloyloxy-poly (ethylene glycol)) on physical properties of marine polysaccharide. J Polym Environ 28:152–165. https://doi.org/10.1007/s10924-019-01574-0

    Article  CAS  Google Scholar 

  47. Raquez JM, Narayan R, Dubois P (2008) Recent advances in reactive extrusion processing of biodegradable polymer-based compositions. Macromol Mater Eng 293:447–470. https://doi.org/10.1002/mame.200700395

    Article  CAS  Google Scholar 

  48. Tang X, Li Z, Chen Y (2009) Adsorption behavior of Zn (II) on calcinated Chinese loess. J Hazard Mater 161:824–834. https://doi.org/10.1016/j.jhazmat.2008.04.059

    Article  CAS  PubMed  Google Scholar 

  49. Liu P, Jiang LP, Zhu LX, Guo JS, Wang AQ (2015) Synthesis of covalently crosslinked attapulgite/poly (acrylic acid-co-acrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions. J Ind Eng Chem 23:188–193. https://doi.org/10.1016/j.jiec.2014.08.014

    Article  CAS  Google Scholar 

  50. Chen K, Li P, Li X, Liao C, Li X, Zuo Y (2021) Effect of silane coupling agent on compatibility interface and properties of wheat straw/polylactic acid composites. Int J Biol Macromol 182:2108–2116. https://doi.org/10.1016/j.ijbiomac.2021.05.207

    Article  CAS  PubMed  Google Scholar 

  51. ** SP, Gu JX, Shi YJ, Shao KR, Yu XH, Yue GR (2013) Preparation and electrical sensitive behavior of poly (N-vinylpyrrolidone-co-acrylic acid) hydrogel with flexible chain nature. Eur Polym J 49:1871–1880. https://doi.org/10.1016/j.eurpolymj.2013.04.022

    Article  CAS  Google Scholar 

  52. Roy S, Yue CY, Venkatraman SS, Ma LL (2013) Fabrication of smart COC chips: advantages of N-vinylpyrrolidone (NVP) monomer over other hydrophilic monomers. Sensors Actuators B Chem 178:86–95. https://doi.org/10.1016/j.snb.2012.12.058

    Article  CAS  Google Scholar 

  53. Rafiee E, Joshaghani M, Abadi PG-S (2016) Effect of a weak magnetic field on the Mizoroki–Heck coupling reaction in the presence of wicker-like palladium-poly(N-vinylpyrrolidone)-iron nanocatalyst. J Magn Magn Mater 408:107–115. https://doi.org/10.1016/j.jmmm.2016.02.032

    Article  ADS  CAS  Google Scholar 

  54. Lu TJ, Wang L, He YF, Chen J, Wang RM (2017) Loess surface grafted functional copolymer for removing basic fuchsin. RSC Adv 30:18379–18383. https://doi.org/10.1039/c7ra00610a

    Article  ADS  CAS  Google Scholar 

  55. Sokolova AT, Tolpeshta II, Danilin VI, Izosimova GYu, Chalova ST (2019) Acid–Base characteristics and clay mineralogy in the rhizospheres of Norway maple and common spruce and in the bulk mass of podzolic soil. Eurasian Soil Sci 52:707–717. https://doi.org/10.1134/S1064229319060115

    Article  ADS  CAS  Google Scholar 

  56. Li XB, Xu XM, Zhou QS, Qi TG, Liu GH, Peng ZH, Cui YF, Li JP (2016) Thermodynamic and XRD analysis of reaction behaviors of gangue minerals in roasting mixture of scheelite and calcium carbonate for Ca3WO6 preparation. Int J Refract Met Hard Mater 60:82–91. https://doi.org/10.1016/j.ijrmhm.2016.07.007

    Article  CAS  Google Scholar 

  57. Zhang Z, Zou P, Wang Y, Zhang X (2023) Impact of nano-CaCO3 and PVA fiber on properties of fresh and hardened geopolymer mortar. Buildings 13:1380. https://doi.org/10.3390/buildings13061380

    Article  Google Scholar 

  58. Sikha S, Mandal B (2022) Ultrasound-assisted facile synthesis of Ce/Fe nanoparticles impregnated activated carbon for fluoride remediation. Sep Purif Technol 289:120785. https://doi.org/10.1016/j.seppur.2022.120785

    Article  CAS  Google Scholar 

  59. He YF, Zhang L, Wang RM, Li HR, Wang Y (2012) Loess clay based copolymer for removing Pb (II) ions. J Hazard Mater 227:334–340. https://doi.org/10.1016/j.jhazmat.2012.05.071

    Article  CAS  PubMed  Google Scholar 

  60. Ramutshatsha-Makhwedzha D, Mavhungu A, Moropeng ML, Mbaya R (2022) Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater. Heliyon 8:e09930. https://doi.org/10.1016/j.heliyon.2022.e09930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fu H (2017) Treatment of oilfield fracturing wastewater. Petrol Sci Technol 35:1743–1749. https://doi.org/10.1080/10916466.2017.1363777

    Article  CAS  Google Scholar 

  62. Liu F, Li W, Zhou Y (2021) Preparation and characterization of magnetic sodium alginate-modified zeolite for the efficient removal of methylene blue. Colloid Surf A 629:127403. https://doi.org/10.1016/j.colsurfa.2021.127403

    Article  CAS  Google Scholar 

  63. Lv B, Dong B, Zhang C, Chen Z, Zhao Z, Deng X, Fang C (2022) Effective adsorption of methylene blue from aqueous solution by coal gangue-based zeolite granules in a fluidized bed: fluidization characteristics and continuous adsorption. Powder Technol 408:117764. https://doi.org/10.1016/j.powtec.2022.117764

    Article  CAS  Google Scholar 

  64. Zhang S, Fan X, Xue J (2023) A novel magnetic manganese oxide halloysite composite by one-pot synthesis for the removal of methylene blue from aqueous solution. J Alloy Compd 930:167050. https://doi.org/10.1016/j.jallcom.2022.167050

    Article  CAS  Google Scholar 

  65. Kaya-Ozkiper K, Uzun A, Soyer-Uzun S (2022) A novel alkali activated magnesium silicate as an effective and mechanically strong adsorbent for methylene blue removal. J Hazard Mater 424:127256. https://doi.org/10.1016/j.jhazmat.2021.127256

    Article  CAS  PubMed  Google Scholar 

  66. Shen Q, Xu M, Wu T, Pan GX, Tang PS (2021) Adsorption behavior of tetracycline on carboxymethyl starch grafted magnetic bentonite. Chem Pap 76:123–135. https://doi.org/10.1007/s11696-021-01839-w

    Article  CAS  Google Scholar 

  67. Feng X, Yan S, Jiang S, Huang K, Ren XQ, Du XH, **ng PF (2021) Green synthesis of the metakaolin/slag based geopolymer for the effective removal of methylene blue and Pb (II). SILICON 14:6965–6979. https://doi.org/10.1007/s12633-021-01439-z

    Article  CAS  Google Scholar 

  68. Gili M, Olegario E (2020) Effects of γ-irradiation on the Cu2+ sorption behaviour of NaOH-modified Philippine natural zeolites. Clay Miner 55:248–255. https://doi.org/10.1180/clm.2020.34

    Article  ADS  CAS  Google Scholar 

  69. Cao X, Meng Z, Song E, Sun X, Hu X, Li W, Liu Z, Gao S, Song B (2022) Co-adsorption capabilities and mechanisms of bentonite enhanced sludge biochar for de-risking norfloxacin and Cu2+ contaminated water. Chemosphere 299:134414. https://doi.org/10.1016/j.chemosphere.2022.134414

    Article  CAS  PubMed  Google Scholar 

  70. Peng SY, Lin YW, Lee WH, Lin YY, Hung MJ, Lin KL (2023) Removal of Cu2+ from wastewater using eco-hydroxyapatite synthesized from marble sludge. Mater Chem Phys 293:126854. https://doi.org/10.1016/j.matchemphys.2022.126854

    Article  CAS  Google Scholar 

  71. Wei S, Wang L, Wu Y, Liu H (2022) Study on removal of copper ions from aqueous phase by modified sepiolite flocs method. Environ Sci Pollut Res Int 29:73492–73503. https://doi.org/10.1007/s11356-022-21045-9

    Article  CAS  PubMed  Google Scholar 

  72. Wang D, Wang R, Peng W, Zhang J, Wang Y, Huang M, Zhang N, Duan Y, Fang Y (2023) Experimental and DFT study of Cu (II) removed by Na-montmorillonite. Water Sci Technol 87:834–851. https://doi.org/10.2166/wst.2023.045

    Article  ADS  CAS  PubMed  Google Scholar 

  73. **ong Q, Zhang F (2022) Study on the performance of composite adsorption of Cu2+ by chitosan/β-cyclodextrin cross-linked zeolite. Sustainability 14:2106. https://doi.org/10.3390/su14042106

    Article  CAS  Google Scholar 

  74. Hu YY, Pan C, Zheng XH, Hu FP, Xu L, Xu GP, Jian Y, Peng XM (2021) Prediction and optimization of adsorption properties for Cs+ on NiSiO@NiAlFe LDHs hollow spheres from aqueous solution: kinetics, isotherms, and BBD model. J Hazard Mater 401:123374. https://doi.org/10.1016/j.jhazmat.2020.123374

    Article  CAS  PubMed  Google Scholar 

  75. Rezaei Kalantary R, Jonidi Jafari A, Kakavandi B, Nasseri S, Ameri A, Azari A (2014) Adsorption and magnetic separation of lead from synthetic wastewater using carbon/iron oxide nanoparticles composite. J Mazandaran Univ Med Sci 24:172–183

    Google Scholar 

  76. **e YM, Fan LJ, Liu WB, Zhang Q, Huang GL (2023) Synthesis of Mn/Co-MOF for effective removal of U(VI) from aqueous solution. Particuology 72:134–144. https://doi.org/10.1016/j.partic.2022.03.004

    Article  CAS  Google Scholar 

  77. Paluri P, Ahmad KA, Durbha KS (2020) Importance of estimation of optimum isotherm model parameters for adsorption of methylene blue onto biomass derived activated carbons: comparison between linear and non-linear methods. Biomass Convers Biorefinery 12:4031–4048. https://doi.org/10.1007/s13399-020-00867-y

    Article  CAS  Google Scholar 

Download references

Funding

The project was supported by the National Natural Science Foundation of China (Grant No. 21865030) and the Science and Technology Program of Gansu Province (22JR5RA138).

Author information

Authors and Affiliations

Authors

Contributions

FZ: writing—original draft, review. HY: writing—editing. XS: formal analysis. YZ: validation, editing. HL: data curation. YH: project administration, supervision. RW: supervision, project administration, funding acquisition, conceptualization, writing—review and editing.

Corresponding author

Correspondence to Rongmin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Yang, H., Sun, X. et al. Eco-friendly Copolymer Grafted Loess Particles for Rapid and Efficient Removal Pollutants in Wastewater. J Polym Environ 32, 1090–1104 (2024). https://doi.org/10.1007/s10924-023-03032-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03032-4

Keywords

Navigation