Log in

The Influence of Polyamide Dendrimers on Properties of PVA/PAA Hydrogel Films

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polyamide dendrimers, poly(vinyl alcohol) (PVA), and poly(acrylic acid) (PAA) were heat-treated for hydrogels films preparation. The effect of the dendrimers periphery type (OH, NH2), dendrimers content, and generation number on the properties of the hydrogels and adsorption performance at different pHs have been examined. Chemically bonded dendrimers into the hydrogel showed a high swelling ratio and high gel content compared to a neat film of PVA/PAA. The incorporation of dendrimers increases the swelling ability of the hydrogel. The highest swelling obtained was at low dendrimers content and high generation numbers G3-OH and G3-NH2. The diffusion of water within the hydrogel follows the Fickian character. Combining the polyamide dendrimers into the hydrogel films showed potential use in metal chelating and the adsorption of Ni2+, Zn2+, Fe2+, and Cu2+ ions onto the hydrogel. The adsorption results have shown dependency on pH, generation number, and dendrimers content. The adsorption increases at pH 6, high generation number, and high dendrimers content regardless of the periphery. The hydrogel containing G3-OH had high swelling and metal ion adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All the data are available in the manuscript.

References

  1. Wu L et al (2020) Strong and tough PVA/PAA hydrogel fiber with highly strain sensitivity enabled by coating MWCNTs. Compos Part A Appl Sci Manuf 138:1–11

    Article  Google Scholar 

  2. Cheng Y et al (2020) High strength Polyvinyl alcohol/Polyacrylic acid (PVA/PAA) hydrogel fabricated by Cold-Drawn method for cartilage tissue substitutes. J Biomater Sci Polym Ed 31:1836–1851

    Article  CAS  PubMed  Google Scholar 

  3. Diken ME et al (2020) Synthesis, characterization, and their some chemical and biological properties of PVA/PAA/nPS hydrogel nanocomposites: Hydrogel and wound dressing. J Bioact Compat Polym 35:203–215

    Article  CAS  Google Scholar 

  4. Yan Yu et al (2022) A Tough, slippery, and anticoagulant double-network hydrogel coating. Appl Polym Mater 4:5941–5951

    Article  Google Scholar 

  5. Zhang S, Shi Q, Christodoulatos C, Meng X (2019) Lead and cadmium adsorption by electrospun PVA/PAA nanofibers: Batch, spectroscopic, and modeling study. Chemosphere 233:405–413

    Article  CAS  PubMed  Google Scholar 

  6. Hardian R, Pogany P, Lee YM, Szekely G (2021) Molecular sieving using metal-polymer coordination membranes in organic media. J Mater Chem A 9:14400–14410

    Article  CAS  Google Scholar 

  7. Alammar A et al (2020) Architecting neonicotinoid-scavenging nanocomposite hydrogels for environmental remediation. Appl Mater Today 21:1–11

    Google Scholar 

  8. Kunalan S, Palanivelu K, Sachin EK, Teplyakov DASVV (2022) Thin-film hydrogel polymer layered polyvinyltrimethylsilane dual-layer flat-bed composite membrane for CO2 gas separation. J. Appl. Polym. Sci. 139:1–16

    Article  Google Scholar 

  9. Chen Q, Zhu L (2012) PVA/PVAm hydrogel membranes for removal of metal ions from aqueous solution. Appl Mech Mater 130–134:1507–1510

    Article  Google Scholar 

  10. He J, Chen JP (2014) Cu(II)-imprinted poly(vinyl alcohol)/poly(acrylic acid) membrane for greater enhancement in sequestration of copper ion in the presence of competitive heavy metal ions: Material development, process demonstration, and study of mechanisms. Ind Eng Chem Res 53:20223–20233

    Article  CAS  Google Scholar 

  11. Li Z et al (2022) Fabrication of a novel electrospun polyvinyl alcohol/polyacrylic acid nanofiber adsorbent loading with montmorillonite or zeolite for uranium (VI) removal. J Radioanal Nucl Chem 331:297–307

    Article  CAS  Google Scholar 

  12. Hu Z et al (2021) pH-responsive antibacterial film based polyvinyl alcohol/poly (acrylic acid) incorporated with aminoethyl-phloretin and application to pork preservation. Food Res Int 147:1–13

    Article  Google Scholar 

  13. Zhan F, Yan X, Li J, Sheng F, Li B (2021) Encapsulation of tangeretin in PVA/PAA crosslinking electrospun fibers by emulsion-electrospinning: Morphology characterization, slow-release, and antioxidant activity assessment. Food Chem 337:1–9

    Article  Google Scholar 

  14. **hua X et al (2020) Phosphate functionalized poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA): an electrospinning nanofiber for uranium separation. J Radioanal Nucl Chem 326:475–486

    Article  Google Scholar 

  15. Bessbousse H, Verchère JF, Lebrun L (2012) Characterisation of metal-complexing membranes prepared by the semi-interpenetrating polymer networks technique. Application to the removal of heavy metal ions from aqueous solutions. Chem. Eng. J. 187:16–28

    Article  CAS  Google Scholar 

  16. Kim J, Kang T, Kim H, Shin HJ, Oh SG (2019) Preparation of PVA/PAA nanofibers containing thiol-modified silica particles by electrospinning as an eco-friendly Cu (II) adsorbent. J Ind Eng Chem 77:273–279

    Article  CAS  Google Scholar 

  17. Byun H et al (2008) Swelling behavior and drug release of poly(vinyl alcohol) hydrogel cross-linked with poly(acrylic acid). Macromol Res 16:189–193

    Article  CAS  Google Scholar 

  18. Al-qudah YHF, Mahmoud GA, Abdel Khalek MA (2014) Radiation crosslinked poly (vinyl alcohol)/acrylic acid copolymer for removal of heavy metal ions from aqueous solutions. J. Radiat. Res. Appl. Sci. 7:135–145

    CAS  Google Scholar 

  19. Tomalia DA et al (1985) A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym J 17:117–132

    Article  CAS  Google Scholar 

  20. Newkome GR, Yao Z, Baker GR, Gupta VK (1985) Cascade molecules: A new approch to micelles. J. Org. Chem 50:2003–2004

    Article  CAS  Google Scholar 

  21. Lyu Z, Ding L, Tintaru A, Peng L (2020) Self-Assembling Supramolecular Dendrimers for Biomedical Applications: Lessons Learned from Poly(amidoamine) Dendrimers. Acc Chem Res 53:2936–2949

    Article  CAS  PubMed  Google Scholar 

  22. de Araújo RV, da Santos SS, Ferreira EI, Giarolla J (2018) New Advances in general biomedical applications of PAMAM dendrimers. Molecules 23:1–27

    Article  Google Scholar 

  23. Abdalgader A, Elejmi A, Elhrari W, Abdoorhman Z (2021) Synthesis and antibacterial property of polyamide dendrimers based on tetraethyl-1,1,3,3-propanetetracarboxylate. J Polym Res 28(462):1–9

    Google Scholar 

  24. Linda F. Cudeman, NAP. Preparation and Characterization of pH-Sensitive, Interpenetrating Networks of Poly (vinyl alcohol) and Poly( acrylic acid).

  25. Lee YM, Kim SH, Cho CS (1996) Synthesis and swelling characteristics of pH and thermo-responsive interpenetrating polymer network hydrogel composed of poly(vinyl alcohol) and poly(acrylic acid). J Appl Polym Sci 62:301–311

    Article  CAS  Google Scholar 

  26. Sergios P, Evangelos K, Evangelos F, Andreas S, George R, Fotiod K (2010) Metal-varboxylate interactions in metal-algnate complexes studied with FTIR spectroscopy. Carbohyd Res 345:469–473

    Article  Google Scholar 

  27. Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704

    Article  CAS  PubMed  Google Scholar 

  28. Ottaviani MF, Valluzzi R, Balogh L (2002) Internal structure of silver-poly(amidoamine) dendrimer complexes and nanocomposites. Macromolecules 35:5105–5115

    Article  CAS  Google Scholar 

  29. Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT (2001) Dendrimer-Silver Complexes and Nanocomposites as Antimicrobial Agents. Nano Lett 1:18–21

    Article  CAS  Google Scholar 

  30. Rajesh R, Venkatesan R (2012) Encapsulation of silver nanoparticles into graphite grafted with hyperbranched poly(amidoamine) dendrimer and their catalytic activity towards reduction of nitro aromatics. J Mol Catal A Chem 359:88–96

    Article  CAS  Google Scholar 

  31. Štofik M, Strýhal Z, Malý J (2009) Dendrimer-encapsulated silver nanoparticles as a novel electrochemical label for sensitive immunosensors. Biosens Bioelectron 24:1918–1923

    Article  PubMed  Google Scholar 

  32. Carla B, Antonio B, Claudia G, Paola G, Palma M, Barbara V (2013) Metal ion binding by a G-2 poly(ethylene imine) dendrimer, ion directed self-assembling of hieraarchical mono-and two- dimesdional nanostructured materials. Inorg Chem 52:2125–2137

    Article  Google Scholar 

  33. Mingqi Z, Li S, Richard C (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120:4877–4878

    Article  Google Scholar 

  34. Kaiyan W, Bingxiang W, Bentian T, Li** L, Wenlong X, Beibei Z, Yuzhong N (2021) Adsorption of aqueous Cu(II) and Ag(I) by silica anchored schiff base decorated polyamidoamine dendrimers: behavior and mechanism. Chin Chem Lett 33:2721–2725

    Google Scholar 

  35. Francesca M, Fabio M, Nicholas T, Donald T (1997) Characterization of starburst dendrimers by the EPR techniques copper(II) ions binding full-generation dendrimers. J. Phys. Chem. B. 101:158–166

    Article  Google Scholar 

  36. Katherine M, Justin J, Stacia R, Lucy G, David VB, Keith S (2012) Spectrophotomertic titration of bimetallic metal cation binding in polyamido(amine) dendrimer templates. Anal. Chem. 84:5154–5158

    Article  Google Scholar 

  37. Muller J et al (2021) Complexation properties of water-soluble poly(vinyl alcohol) (PVA)-based acidic chelating polymers. Sep Purif Technol 255:1–11

    Article  Google Scholar 

Download references

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

W.E. wrote the main manuscript text, A.A. did the lab work, and A.E. reviewed the manuscript.

Corresponding author

Correspondence to Wael Elhrari.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalgader, A., Elhrari, W. & Elejmi, A. The Influence of Polyamide Dendrimers on Properties of PVA/PAA Hydrogel Films. J Polym Environ 32, 57–67 (2024). https://doi.org/10.1007/s10924-023-02963-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02963-2

Keywords

Navigation