Log in

Biodegradable Edible Film Based on Basil Seed Gum: The Effect of Gum and Plasticizer Concentrations

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this research, edible films produced from basil seed gum (BSG) with three different gum (0.5%, 1%, 1.5%) and plasticizer concentrations (1%, 3%, 5%) were developed, and the physical, thermal, barrier and microstructural properties of these films were measured. As a result of XRD, AFM, DSC, and FT-IR spectroscopy analyses, it was concluded that barrier properties and thermal stability of BSG-based films are quite good. The increase in gum and glycerol concentrations increased the crystallinity also improved the barrier properties of the film. Also, films with low gum and high glycerol ratio have almost smooth surfaces and appropriate transparency for packaging applications. As the glycerol and BSG concentration increased, WVP values of the films increased. The complete dissolution of this film in the soil within 60 days, even at the highest gum concentration, showed that this material could be considered eco-friendly packaging. For this reason, it is thought that BSG-based films and coatings with suitable gum and plasticizer concentrations can be a potential packaging material for foods since they can be obtained at low cost, have a very good barrier, thermal and structural properties, and are edible and biodegradable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ma Q, Hu D, Wang H, Wang L (2016) Tara gum edible film incorporated with oleic acid. Food Hydrocoll 56:127–133. https://doi.org/10.1016/J.FOODHYD.2015.11.033

    Article  CAS  Google Scholar 

  2. Janjarasskul T, Krochta JM (2010) Edible packaging materials. Annu Rev Food Sci Technol. https://doi.org/10.1146/annurev.food.080708.100836

    Article  PubMed  Google Scholar 

  3. Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C 33:1819–1841. https://doi.org/10.1016/J.MSEC.2013.01.010

    Article  CAS  Google Scholar 

  4. Khazaei N, Esmaiili M, Djomeh ZE et al (2014) Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2013.10.062

    Article  PubMed  Google Scholar 

  5. Zahedi Y, Sedaghat N, Ghanbarzadeh B (2011) Effect of physical state of fatty acids on the physical properties of PGP-based emulsified edible film. Int J Nuts Relat Sci 2:9–16

    Google Scholar 

  6. Falguera V, Quintero JP, Jiménez A et al (2011) Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci Technol 22:292–303

    Article  CAS  Google Scholar 

  7. Cagri A, Ustunol Z, Ryser ET (2004) Antimicrobial edible films and coatings. J Food Prot. https://doi.org/10.4315/0362-028X-67.4.833

    Article  PubMed  Google Scholar 

  8. Hosseini-Parvar SH, Matia-Merino L, Goh KKT et al (2010) Steady shear flow behavior of gum extracted from Ocimum basilicum L. seed: effect of concentration and temperature. J Food Eng 101:236–243. https://doi.org/10.1016/j.jfoodeng.2010.06.025

    Article  Google Scholar 

  9. Razavi SMA, Mortazavi SA, Matia-Merino L et al (2009) Optimisation study of gum extraction from basil seeds (Ocimum basilicum L.). Int J Food Sci Technol 44:1755–1762. https://doi.org/10.1111/j.1365-2621.2009.01993.x

    Article  CAS  Google Scholar 

  10. Osano JP, Hosseini-Parvar SH, Matia-Merino L, Golding M (2014) Emulsifying properties of a novel polysaccharide extracted from basil seed (Ocimum bacilicum L.): effect of polysaccharide and protein content. Food Hydrocoll 37:40–48. https://doi.org/10.1016/j.foodhyd.2013.09.008

    Article  CAS  Google Scholar 

  11. Naji-Tabasi S, Razavi SMA (2017) New studies on basil (Ocimum bacilicum L.) seed gum: part III – steady and dynamic shear rheology. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2015.12.020

    Article  Google Scholar 

  12. Hosseini-Parvar SH, Osano JP, Matia-Merino L (2016) Emulsifying properties of basil seed gum: effect of pH and ionic strength. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2015.09.002

    Article  Google Scholar 

  13. Azuma J, Sakamoto M (2011) Cellulosic hydrocollid system present in seed of plants. Trends Glycosci Glycotechnol. https://doi.org/10.4052/tigg.15.1

    Article  Google Scholar 

  14. Hashemi Gahruie H, Ziaee E, Eskandari MH, Hosseini SMH (2017) Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr Polym 166:93–103. https://doi.org/10.1016/j.carbpol.2017.02.103

    Article  CAS  PubMed  Google Scholar 

  15. Hashemi SMB, Mousavi Khaneghah A (2017) Characterization of novel basil-seed gum active edible films and coatings containing oregano essential oil. Prog Org Coatings 110:35–41. https://doi.org/10.1016/j.porgcoat.2017.04.041

    Article  CAS  Google Scholar 

  16. Mushtaq M, Gani A, Gani A et al (2018) Use of pomegranate peel extract incorporated zein film with improved properties for prolonged shelf life of fresh Himalayan cheese (Kalari/kradi). Innov Food Sci Emerg Technol 48:25–32. https://doi.org/10.1016/j.ifset.2018.04.020

    Article  CAS  Google Scholar 

  17. Escamilla-García M, Calderón-Domínguez G, Chanona-Pérez JJ et al (2013) Physical and structural characterisation of zein and chitosan edible films using nanotechnology tools. Int J Biol Macromol 61:196–203. https://doi.org/10.1016/j.ijbiomac.2013.06.051

    Article  CAS  PubMed  Google Scholar 

  18. Khazaei N, Esmaiili M, Djomeh ZE et al (2014) Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydr Polym 102:199–206. https://doi.org/10.1016/j.carbpol.2013.10.062

    Article  CAS  PubMed  Google Scholar 

  19. Xu T, Gao CC, Feng X et al (2019) Structure, physical and antioxidant properties of chitosan-gum arabic edible films incorporated with cinnamon essential oil. Int J Biol Macromol 134:230–236. https://doi.org/10.1016/j.ijbiomac.2019.04.189

    Article  CAS  PubMed  Google Scholar 

  20. Motalebi Moghanjougi Z, Rezazadeh Bari M, Alizadeh Khaledabad M et al (2020) Bio-preservation of white brined cheese (Feta) by using probiotic bacteria immobilized in bacterial cellulose: Optimization by response surface method and characterization. LWT. https://doi.org/10.1016/j.lwt.2019.108603

    Article  Google Scholar 

  21. Liang T, Wang L (2018) Preparation and characterization of a novel edible film based on Artemisia sphaerocephala Krasch. gum: effects of type and concentration of plasticizers. Food Hydrocoll 77:502–508. https://doi.org/10.1016/j.foodhyd.2017.10.028

    Article  CAS  Google Scholar 

  22. Ghasemlou M, Khodaiyan F, Oromiehie A, Yarmand MS (2011) Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chem. https://doi.org/10.1016/j.foodchem.2011.02.003

    Article  Google Scholar 

  23. Mohammad Amini A, Razavi SMA, Zahedi Y (2015) The influence of different plasticisers and fatty acids on functional properties of basil seed gum edible film. Int J Food Sci Technol 50:1137–1143. https://doi.org/10.1111/ijfs.12765

    Article  CAS  Google Scholar 

  24. Medina-Jaramillo C, Ochoa-Yepes O, Bernal C, Famá L (2017) Active and smart biodegradable packaging based on starch and natural extracts. Carbohydr Polym 176:187–194. https://doi.org/10.1016/j.carbpol.2017.08.079

    Article  CAS  PubMed  Google Scholar 

  25. Zhang P, Zhao Y, Shi Q (2016) Characterization of a novel edible film based on gum ghatti: effect of plasticizer type and concentration. Carbohydr Polym 153:345–355. https://doi.org/10.1016/J.CARBPOL.2016.07.082

    Article  CAS  PubMed  Google Scholar 

  26. Chen CH, Kuo WS, Lai LS (2009) Rheological and physical characterization of film-forming solutions and edible films from tapioca starch/decolorized hsian-tsao leaf gum. Food Hydrocoll 23:2132–2140. https://doi.org/10.1016/J.FOODHYD.2009.05.015

    Article  CAS  Google Scholar 

  27. Pak ES, Ghaghelestani SN, Najafi MA (2020) Preparation and characterization of a new edible film based on Persian gum with glycerol plasticizer. J Food Sci Technol 57:3284–3294. https://doi.org/10.1007/s13197-020-04361-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sandhu KS, Sharma L, Kaur M, Kaur R (2020) Physical, structural and thermal properties of composite edible films prepared from pearl millet starch and carrageenan gum: Process optimization using response surface methodology. Int J Biol Macromol 143:704–713. https://doi.org/10.1016/J.IJBIOMAC.2019.09.111

    Article  PubMed  Google Scholar 

  29. Mihaly Cozmuta A, Turila A, Apjok R et al (2015) Preparation and characterization of improved gelatin films incorporating hemp and sage oils. Food Hydrocoll 49:144–155. https://doi.org/10.1016/J.FOODHYD.2015.03.022

    Article  CAS  Google Scholar 

  30. Razavi SMA, Mohammad Amini A, Zahedi Y (2015) Characterisation of a new biodegradable edible film based on sage seed gum: Influence of plasticiser type and concentration. Food Hydrocoll 43:290–298. https://doi.org/10.1016/J.FOODHYD.2014.05.028

    Article  CAS  Google Scholar 

  31. Sadeghi-Varkani A, Emam-Djomeh Z, Askari G (2018) Physicochemical and microstructural properties of a novel edible film synthesized from Balangu seed mucilage. Int J Biol Macromol 108:1110–1119. https://doi.org/10.1016/j.ijbiomac.2017.11.029

    Article  CAS  PubMed  Google Scholar 

  32. Jouki M, Khazaei N, Ghasemlou M, Hadinezhad M (2013) Effect of glycerol concentration on edible film production from cress seed carbohydrate gum. Carbohydr Polym 96:39–46. https://doi.org/10.1016/j.carbpol.2013.03.077

    Article  CAS  PubMed  Google Scholar 

  33. Atef M, Rezaei M, Behrooz R (2015) Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil. Food Hydrocoll 45:150–157. https://doi.org/10.1016/J.FOODHYD.2014.09.037

    Article  CAS  Google Scholar 

  34. Sothornvit R, Krochta JM (2001) Plasticizer effect on mechanical properties of β-lactoglobulin films. J Food Eng 50:149–155. https://doi.org/10.1016/S0260-8774(00)00237-5

    Article  Google Scholar 

  35. Ahmadi R, Kalbasi-Ashtari A, Oromiehie A et al (2012) Development and characterization of a novel biodegradable edible film obtained from psyllium seed (Plantago ovata Forsk). J Food Eng 109:745–751. https://doi.org/10.1016/J.JFOODENG.2011.11.010

    Article  CAS  Google Scholar 

  36. Seyedi S, Koocheki A, Mohebbi M, Zahedi Y (2014) Lepidium perfoliatum seed gum: a new source of carbohydrate to make a biodegradable film. Carbohydr Polym 101:349–358. https://doi.org/10.1016/J.CARBPOL.2013.09.072

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Li D, Wang LJ et al (2011) Dynamic mechanical properties of flaxseed gum based edible films. Carbohydr Polym 86:499–504. https://doi.org/10.1016/j.carbpol.2011.04.079

    Article  CAS  Google Scholar 

  38. Nisar T, Wang ZC, Yang X et al (2018) Characterization of citrus pectin films integrated with clove bud essential oil: physical, thermal, barrier, antioxidant and antibacterial properties. Int J Biol Macromol 106:670–680. https://doi.org/10.1016/J.IJBIOMAC.2017.08.068

    Article  CAS  PubMed  Google Scholar 

  39. Ortiz de Elguea-Culebras G, Bourbon AI, Costa MJ et al (2019) Optimization of a chitosan solution as potential carrier for the incorporation of Santolina chamaecyparissus L. solid by-product in an edible vegetal coating on ‘Manchego’ cheese. Food Hydrocoll 89:272–282. https://doi.org/10.1016/j.foodhyd.2018.10.054

    Article  CAS  Google Scholar 

  40. Saberi B, Thakur R, Vuong QV et al (2016) Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Ind Crops Prod 86:342–352. https://doi.org/10.1016/J.INDCROP.2016.04.015

    Article  CAS  Google Scholar 

  41. **ao C, Lu Y, Gao S, Zhang L (2000) Characterization of konjac glucomannan-gelatin blend films. https://doi.org/10.1002/1097-4628

  42. Zhang Y, Zhou L, Zhang C et al (2020) Preparation and characterization of curdlan/polyvinyl alcohol/thyme essential oil blending film and its application to chilled meat preservation. Carbohydr Polym 247:116670. https://doi.org/10.1016/J.CARBPOL.2020.116670

    Article  CAS  PubMed  Google Scholar 

  43. Akhter R, Masoodi FA, Wani TA, Rather SA (2019) Functional characterization of biopolymer based composite film: incorporation of natural essential oils and antimicrobial agents. Int J Biol Macromol 137:1245–1255. https://doi.org/10.1016/J.IJBIOMAC.2019.06.214

    Article  CAS  PubMed  Google Scholar 

  44. Hasan M, Rusman R, Khaldun I et al (2020) Active edible sugar palm starch-chitosan films carrying extra virgin olive oil: barrier, thermo-mechanical, antioxidant, and antimicrobial properties. Int J Biol Macromol 163:766–775. https://doi.org/10.1016/j.ijbiomac.2020.07.076

    Article  CAS  PubMed  Google Scholar 

  45. Yerramathi BB, Kola M, Annem Muniraj B et al (2021) Structural studies and bioactivity of sodium alginate edible films fabricated through ferulic acid crosslinking mechanism. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2021.110566

    Article  Google Scholar 

  46. Synytsya A, Čopíková J, Matějka P, Machovič V (2003) Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr Polym 54:97–106. https://doi.org/10.1016/S0144-8617(03)00158-9

    Article  CAS  Google Scholar 

  47. Kurt A, Kahyaoglu T (2014) Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydr Polym 104:50–58. https://doi.org/10.1016/j.carbpol.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  48. Naji-Tabasi S, Razavi SMA, Mohebbi M, Malaekeh-Nikouei B (2016) New studies on basil (Ocimum bacilicum L.) seed gum: part I - Fractionation, physicochemical and surface activity characterization. Food Hydrocoll 52:350–358. https://doi.org/10.1016/j.foodhyd.2015.07.011

    Article  CAS  Google Scholar 

  49. Liu Z, Lin D, Shen R et al (2021) Konjac glucomannan-based edible films loaded with thyme essential oil: Physical properties and antioxidant-antibacterial activities. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2021.100700

    Article  Google Scholar 

  50. Dhumal CV, Ahmed J, Bandara N, Sarkar P (2019) Improvement of antimicrobial activity of sago starch/guar gum bi-phasic edible films by incorporating carvacrol and citral. Food Packag Shelf Life. https://doi.org/10.1016/j.fpsl.2019.100380

    Article  Google Scholar 

  51. Hashemi Gahruie H, Mostaghimi M, Ghiasi F et al (2020) The effects of fatty acids chain length on the techno-functional properties of basil seed gum-based edible films. Int J Biol Macromol 160:245–251. https://doi.org/10.1016/j.ijbiomac.2020.05.136

    Article  CAS  PubMed  Google Scholar 

  52. Thessrimuang N, Prachayawarakorn J (2019) Development, modification and characterization of new biodegradable film from basil seed (Ocimum basilicum L.) mucilage. J Sci Food Agric 99:5508–5515. https://doi.org/10.1002/jsfa.9812

    Article  CAS  PubMed  Google Scholar 

  53. Cao L, Liu W, Wang L (2018) Develo** a green and edible film from Cassia gum: The effects of glycerol and sorbitol. J Clean Prod 175:276–282. https://doi.org/10.1016/j.jclepro.2017.12.064

    Article  CAS  Google Scholar 

  54. Pelissari FM, Andrade-Mahecha MM, Sobral PJ, do A, Menegalli FC, (2013) Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocoll 30:681–690. https://doi.org/10.1016/J.FOODHYD.2012.08.007

    Article  CAS  Google Scholar 

  55. Shivangi S, Dorairaj D, Negi PS, Shetty NP (2021) Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocoll 121:107046. https://doi.org/10.1016/j.foodhyd.2021.107046

    Article  CAS  Google Scholar 

  56. Wang K, Wu K, **ao M et al (2017) Structural characterization and properties of konjac glucomannan and zein blend films. Int J Biol Macromol 105:1096–1104. https://doi.org/10.1016/j.ijbiomac.2017.07.127

    Article  CAS  PubMed  Google Scholar 

  57. Mohee R, Unmar GD, Mudhoo A, Khadoo P (2008) Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions. Waste Manag 28:1624–1629. https://doi.org/10.1016/J.WASMAN.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  58. Cerruti P, Santagata G, Gomez D’Ayala G et al (2011) Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer. Polym Degrad Stab 96:839–846. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2011.02.003

    Article  CAS  Google Scholar 

  59. **ong HG, Tang SW, Tang HL, Zou P (2008) The structure and properties of a starch-based biodegradable film. Carbohydr Polym 71:263–268. https://doi.org/10.1016/J.CARBPOL.2007.05.035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Selcuk University Scientific Research Projects Coordinatorship for the financial support to this research with grant number 20401023.

Funding

Funding was supported by Selçuk University Research Foundation Grant Nos. 20401023,20401023,20401023,20401023

Author information

Authors and Affiliations

Authors

Contributions

AO: Conceptualization, Investigation, Methodology, Formal analysis, Software, Validation, Data curation, Writing—original draft, preparation, Writing—review & editing, Visualization. ÇKG: Investigation, Methodology, Formal analysis, Writing—original draft, preparation, Writing—review & editing. TD: Methodology, Writing—original draft, preparation, Writing—review & editing. NA: Funding acquisition, Project administration, Conceptualization, Validation, Resources, Data curation, Supervision.

Corresponding author

Correspondence to Aysun Oraç.

Ethics declarations

Competing interest

The authors have declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1061 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oraç, A., Konak Göktepe, Ç., Demirci, T. et al. Biodegradable Edible Film Based on Basil Seed Gum: The Effect of Gum and Plasticizer Concentrations. J Polym Environ 31, 5003–5014 (2023). https://doi.org/10.1007/s10924-023-02923-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02923-w

Keywords

Navigation