Log in

Lipase-Catalyzed Epigallocatechin Gallate-Based Polymer for Long-Term Transdermal Administration

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Epigallocatechin gallate (EGCG) is an antioxidant agent with many advantageous pharmaceutical properties such as anti-cancer, anti-virus, and anti-oxidative activities with high efficacies and few side effects. However, its’ in vivo instability hinders its practical use. Therefore, this study aimed to synthesize a polymer film that can stably administer EGCG over long periods. The flexible polymer film was synthesized from EGCG and tetraethylene glycol adipate divinyl ester by lipase-catalyzed polymerization. It was confirmed that EGCG conversions and the molecular weights of the polymer were influenced by the reaction conditions such as reaction temperature, lipase concentration, and the substrate concentration. Under acidic conditions, the ester linkages of the polymer gradually degrade to release EGCG for more than 4 days without decreasing its anti-oxidative activity. A permeability experiment using a skin model membrane to assess the utilization of EGCG in transdermal applications showed that the EGCG released from the degradation of the polymer gradually permeates the membrane. These results suggest that the prepared EGCG-based polymer film has the potential for the long-term transdermal administration of EGCG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dugas AJ, Castañeda-Acosta J, Bonin GC, Price KL, Fischer NH, Winston GW (2000) Evaluation of the total Peroxyl Radical-Scavenging Capacity of Flavonoids: structure—activity Relationships. J Nat Prod 63(3):327–331. https://doi.org/10.1021/np990352n

    Article  CAS  PubMed  Google Scholar 

  2. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20(7):933–956. https://doi.org/10.1016/0891-5849(95)02227-9

    Article  CAS  PubMed  Google Scholar 

  3. Chen D, Wan SB, Yang H, Yuan J, Chan TH, Dou QP (2011) Chapter 7—EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. In: Makowski GS (ed) Advances in clinical chemistry. Elsevier, pp 155–177

  4. Zhu M, Chen Y, Li RC (2000) Oral absorption and bioavailability of tea catechins. Planta Med 66(05):444–447

    Article  CAS  PubMed  Google Scholar 

  5. Krupkova O, Ferguson SJ, Wuertz-Kozak K (2016) Stability of (–)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J Nutr Biochem 37:1–12. https://doi.org/10.1016/j.jnutbio.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  6. Lun Su Y, Leung LK, Huang Y, Chen Z-Y (2003) Stability of tea theaflavins and catechins. Food Chem 83(2):189–195. https://doi.org/10.1016/S0308-8146(03)00062-1

    Article  CAS  Google Scholar 

  7. Zimeri J, Tong CH (1999) Degradation kinetics of (–)-Epigallocatechin Gallate as a function of pH and dissolved oxygen in a Liquid Model System. J Food Sci 64(5):753–758. https://doi.org/10.1111/j.1365-2621.1999.tb15905.x

    Article  CAS  Google Scholar 

  8. Bedrood Z, Rameshrad M, Hosseinzadeh H (2018) Toxicological effects of Camellia sinensis (green tea): a review. Phytother Res 32(7):1163–1180. https://doi.org/10.1002/ptr.6063

    Article  PubMed  Google Scholar 

  9. Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26(11):1261–1268. https://doi.org/10.1038/nbt.1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Drew VJ, Huang H-Y, Tsai Z-H, Tsai H-H, Tseng C-L (2017) Preparation of gelatin/epigallocatechin gallate self-assembly nanoparticles for transdermal drug delivery. J Polym Res 24(11):188. https://doi.org/10.1007/s10965-017-1342-0

    Article  CAS  Google Scholar 

  11. Mehmood S, Maqsood M, Mahtab N, Khan MI, Sahar A, Zaib S et al (2022) Epigallocatechin gallate: phytochemistry, bioavailability, utilization challenges, and strategies. J Food Biochem 46(8):e14189. https://doi.org/10.1111/jfbc.14189

    Article  CAS  PubMed  Google Scholar 

  12. Nichols JA, Katiyar SK (2010) Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 302(2):71–83. https://doi.org/10.1007/s00403-009-1001-3

    Article  CAS  PubMed  Google Scholar 

  13. Scalia S, Trotta V, Bianchi A (2014) In vivo human skin penetration of (-)-epigallocatechin-3-gallate from topical formulations. Acta Pharm 64(2):257–265. https://doi.org/10.2478/acph-2014-0017

    Article  CAS  PubMed  Google Scholar 

  14. Tobi SE, Gilbert M, Paul N, McMillan TJ (2002) The green tea polyphenol, epigallocatechin-3-gallate, protects against the oxidative cellular and genotoxic damage of UVA radiation. Int J Cancer 102(5):439–444. https://doi.org/10.1002/ijc.10730

    Article  CAS  PubMed  Google Scholar 

  15. Avadhani KS, Manikkath J, Tiwari M, Chandrasekhar M, Godavarthi A, Vidya SM et al (2017) Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Delivery 24(1):61–74. https://doi.org/10.1080/10717544.2016.1228718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li YH, Wu Y, Wei HC, Xu YY, Jia LL, Chen J et al (2009) Protective effects of green tea extracts on photoaging and photommunosuppression. Skin Res Technol 15(3):338–45. https://doi.org/10.1111/j.1600-0846.2009.00370.x

    Article  PubMed  Google Scholar 

  17. Yusuf N, Irby C, Katiyar SK, Elmets CA (2007) Photoprotective effects of green tea polyphenols. PhotoDermatol PhotoImmunol PhotoMed 23(1):48–56. https://doi.org/10.1111/j.1600-0781.2007.00262.x

    Article  PubMed  Google Scholar 

  18. Ramadon D, Goldie AW, Anwar E (2017) Novel transdermal ethosomal gel containing green tea (Camellia sinensis L. Kuntze) leaves extract: formulation and in vitro penetration study. J Young Pharm 9(3):336

    Article  CAS  Google Scholar 

  19. Harwansh RK, Mukherjee PK, Kar A, Bahadur S, Al-Dhabi NA, Duraipandiyan V (2016) Enhancement of photoprotection potential of catechin loaded nanoemulsion gel against UVA induced oxidative stress. J Photochem Photobiol B 160:318–329. https://doi.org/10.1016/j.jphotobiol.2016.03.026

    Article  CAS  PubMed  Google Scholar 

  20. Batchelder RJ, Calder RJ, Thomas CP, Heard CM (2004) In vitro transdermal delivery of the major catechins and caffeine from extract of Camellia sinensis. Int J Pharm 283(1):45–51. https://doi.org/10.1016/j.ijpharm.2004.06.007

    Article  CAS  PubMed  Google Scholar 

  21. Dvorakova K, Dorr RT, Valcic S, Timmermann B, Alberts DS (1999) Pharmacokinetics of the green tea derivative, EGCG, by the topical route of administration in mouse and human skin. Cancer Chemother Pharmacol 43(4):331–335. https://doi.org/10.1007/s002800050903

    Article  CAS  PubMed  Google Scholar 

  22. Lambert JD, Kim DH, Zheng R, Yang CS (2010) Transdermal delivery of (-)-epigallocatechin-3-gallate, a green tea polyphenol, in mice. J Pharm Pharmacol 58(5):599–604. https://doi.org/10.1211/jpp.58.5.0004

    Article  CAS  Google Scholar 

  23. Nitta S, Iwamoto H (2019) Lipase-catalyzed synthesis of epigallocatechin gallate‐based polymer for long‐term release of epigallocatechin gallate with antioxidant property. J Appl Polym Sci 136(26):47693

    Article  Google Scholar 

  24. Rashid H, Golitsyn Y, Bilal MH, Mäder K, Reichert D, Kressler J (2021) Polymer networks synthesized from Poly(Sorbitol Adipate) and functionalized Poly(Ethylene Glycol). Gels 7(1):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zieniuk B, Białecka-Florjańczyk E, Wierzchowska K, Fabiszewska A (2021) Recent advances in the enzymatic synthesis of lipophilic antioxidant and antimicrobial compounds. World J Microbiol Biotechnol 38(1):11. https://doi.org/10.1007/s11274-021-03200-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adlercreutz P (2013) Immobilisation and application of lipases in organic media. Chem Soc Rev 42(15):6406–6436. https://doi.org/10.1039/C3CS35446F

    Article  CAS  PubMed  Google Scholar 

  27. Yamaguchi S, Tanha M, Hult A, Okuda T, Ohara H, Kobayashi S (2014) Green polymer chemistry: lipase-catalyzed synthesis of bio-based reactive polyesters employing itaconic anhydride as a renewable monomer. Polym J 46(1):2–13. https://doi.org/10.1038/pj.2013.62

    Article  CAS  Google Scholar 

  28. Kobayashi S (2010) Lipase-catalyzed polyester synthesis—a green polymer chemistry. Proc Jpn Acad B 86(4):338–65. https://doi.org/10.2183/pjab.86.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matsumura K, Kaihatsu K, Mori S, Cho HH, Kato N, Hyon SH (2008) Enhanced antitumor activities of (–)-epigallocatechin-3-O-gallate fatty acid monoester derivatives in vitro and in vivo. Biochem Biophys Res Commun 377(4):1118–1122. https://doi.org/10.1016/j.bbrc.2008.10.128

    Article  CAS  PubMed  Google Scholar 

  30. Mori S, Miyake S, Kobe T, Nakaya T, Fuller SD, Kato N et al (2008) Enhanced anti-influenza a virus activity of (–)-epigallocatechin-3-O-gallate fatty acid monoester derivatives: effect of alkyl chain length. Bioorg Med Chem Lett 18(14):4249–4252. https://doi.org/10.1016/j.bmcl.2008.02.020

    Article  CAS  PubMed  Google Scholar 

  31. Bisht KS, Svirkin YY, Henderson LA, Gross RA, Kaplan DL, Swift G (1997) Lipase-catalyzed ring-opening polymerization of trimethylene carbonate. Macromolecules 30(25):7735–7742. https://doi.org/10.1021/ma9708858

    Article  CAS  Google Scholar 

  32. Visco A, Brancato V, Campo N (2012) Degradation effects in polyester and vinyl ester resins induced by accelerated aging in seawater. J Compos Mater 46(17):2025–2040. https://doi.org/10.1177/0021998311428533

    Article  CAS  Google Scholar 

  33. Dash S, Murthy PN, Nath L, Chowdhury P (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67(3):217–223

    CAS  PubMed  Google Scholar 

  34. Kalia YN, Guy RH (2001) Modeling transdermal drug release. Adv Drug Deliv Rev 48(2):159–172. https://doi.org/10.1016/S0169-409X(01)00113-2

    Article  CAS  PubMed  Google Scholar 

  35. Mamatha T, Venkateswara Rao J, Mukkanti K, Ramesh G (2010) Development of matrix type transdermal patches of lercanidipine hydrochloride: physicochemical and in-vitro characterization. Daru: J Fac Pharm Tehran Univ Med Sci 18(1):9–16

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Sachi Shibata (Fukuyama University) for assistance with the cytotoxicity study, Dr. Choshi and Dr. Nishiyama (Fukuyama University) for assistance with the NMR analyses, and Dr. Yamaguchi (Fukuyama University) for the assistance with microplate reader. This work was supported by a JSPS Grant-in-Aid for JSPS Research Fellow (Grant Number 17J40043).

Author information

Authors and Affiliations

Authors

Contributions

SN wrote the main manuscript. Both authors reviewed the manuscript.

Corresponding author

Correspondence to Sachiko Nitta.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 306.3 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitta, S., Iwamoto, H. Lipase-Catalyzed Epigallocatechin Gallate-Based Polymer for Long-Term Transdermal Administration. J Polym Environ 31, 4421–4429 (2023). https://doi.org/10.1007/s10924-023-02872-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02872-4

Keywords

Navigation