Log in

Evaluating Biocompatible Amino Acid-Based Poly(ionic liquid)s for CO2 Absorption

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Amino acid-based ionic liquids are biocompatible agents which showed a potential for CO2 adsorption. On the other hand poly(ionic liquid)s were showed high adsorption capacity than corresponds ionic liquids. Therefore in this work, for the first time seven biocompatible poly(ionic liquid)s based on amino acids (AAPIL), i.e., alanine [Ala], glycine [Gly], proline [Pro], valine [Val], arginine [Arg], histidine [Hist], and lysine [Lys], were synthesized and characterized, and their CO2 absorption capacities were investigated using the quartz crystal microbalance (QCM) at temperatures of 288.15–308.15 and pressures up to 5 bar. The results showed that the AAPILs are capable to capturing CO2 more than PILs due to functionalized amine tethered at the anion. Based on the absorption mechanism, the reaction equilibrium thermodynamic model is applied to correlating the experimental CO2 absorption capacities. The thermodynamic parameters including reaction equilibrium constants, Henry’s law constants, and enthalpy of physical dissolution were obtained to calculate the amino acids-based poly (ionic liquid) application potential for capturing CO2. The obtained results imply that CO2 absorption capacity increases with increase in pressure and reduce in temperature. Results indicate that number of amino groups is responsible for their absorption capacities. Amongst the studied AAPILs, the highest CO2 absorption capacity was gotten with P[VIm][Arg] due to the availability of more amino groups. Besides, the chemical absorption of CO2 by carbamate formation is confirmed using FT-IR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Firaha DS, Kirchner B (2016) Tuning the carbon dioxide absorption in amino acid ionic liquids. Chemsuschem 9:1–10

    Google Scholar 

  2. Lei Z, Dai C, Chen B (2014) Gas solubility in ionic liquids. Chem Rev 114:1289–1326

    Article  CAS  PubMed  Google Scholar 

  3. Pan M, Wan g C, (2015) Recent advances in CO2 capture by functionalized ionic liquids, advances in CO2 capture, sequestration, and conversion. American Chemical Society, Washington, DC, pp 341–369

    Book  Google Scholar 

  4. Matter JM, Stute M, Snaebjornsdottir SO, Oelkers EH, Gislason SR, Aradottir ES, Sigfusson B, Gunnarsson I, Sigurdardottir H, Gunnlaugsson E, Axelsson G, Alfredsson HA, Wolff-Boenisch D, Mesfin K, Taya DFDIR, Hall J, Dideriksen K, Broecker WS (2016) Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352:1312–1314

    Article  CAS  PubMed  Google Scholar 

  5. Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325:1652–1654

    Article  CAS  PubMed  Google Scholar 

  6. Cui GK, Wang JJ, Zhang SJ (2016) Active chemisorption sites in functionalized ionic liquids for carbon capture. Chem Soc Rev 45:4307–4339

    Article  CAS  PubMed  Google Scholar 

  7. Earle MJ, Esperanca J, Gilea MA, Lopes JNC, Rebelo LPN, Magee JW, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439:831–834

    Article  CAS  PubMed  Google Scholar 

  8. MacDowell N, FlorinN BA, Hallett J, Galindo A, Jackson G, Adjiman CS, Williams CK, Shah N, Fennell P (2010) An overview of CO2 capture technologies, Energy Environ. Sci 3:1645–1669

    CAS  Google Scholar 

  9. Bara JE, Camper DE, Gin DL, Noble RD (2010) Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc Chem Res 43:152–159

    Article  CAS  PubMed  Google Scholar 

  10. Vidal L, Riekkola ML, Cannals A (2012) Ionic liquid-modified materials for solid-phase extraction and separation : a review. Anal Chim Acta 715:19–41

    Article  CAS  PubMed  Google Scholar 

  11. Fang W, Luo Zh, Jiang J (2013) CO2 capture in poly(ionic liquid) membranes: atomistic insight into the role of anions. Phys Chem Chem Phys 15:651–658

    Article  CAS  PubMed  Google Scholar 

  12. Washiro S, Yoshizawa M, Nakajima H, Ohno H (2004) Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer 45:1577–1582

    Article  CAS  Google Scholar 

  13. Hoshino K, Yoshio M, Mukai T, Kishimoto K, Ohno H, Kato TJ (2003) One-dimensional ion-conductive polymer films: alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals, Polym. Sci. Polym Chem 41:3486–3492

    Article  CAS  Google Scholar 

  14. Sato T, Marukane S, Narutomi T, Akao T (2007) High-rate performance of a lithium polymer battery using a novel ionic liquid polymer composite. J Power Sources 164:390–396

    Article  CAS  Google Scholar 

  15. Umapathi R, Kumar K, Ghoreishian SM, Mohana Rani GM, Park SY, Huh Y, Venkatesu P (2022) Effect of imidazolium nitrate ionic liquids on conformational changes of poly(N-vinylcaprolactam). ACS Omega 7(44):39742–39749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Umapathi R, Kumar K, Ghoreishian SM, Rani GM, Park SY, Huh YS, Venkatesu P (2022) Tunnelling the structural insights between poly(N-isopropylacrylamide) and imidazolium sulfate ionic liquids. J Mol Liq 360:119404

    Article  CAS  Google Scholar 

  17. Umapathi R, Kumar K, Ghoreishian SM, Rani GM, Park SY, Huh YS, Venkatesu P (2022) Interactions between a biomedical thermoresponsive polymer and imidazolium-based ionic liquids: a comprehensive biophysical investigation. Colloids Surf, A 641:128619

    Article  CAS  Google Scholar 

  18. **ong YB, Wang H, Wang YJ, Wang RM (2011) Novel imidazolium-based poly(ionic liquid)s: preparation, characterization, and absorption of CO2. Polym Adv Technol 23:835–840

    Article  Google Scholar 

  19. Tang J, Shen Y, Radosz M, Sun W (2009) Isothermal carbon dioxide sorption in Poly(ionic liquid)s. Ind Eng Chem Res 48:9113–9118

    Article  CAS  Google Scholar 

  20. Tang J, Sun W, Tang H, Radosz M, Shen Y (2005) Enhanced CO2 absorption of Poly(ionic liquid)s. Macromolecules 38:2037–2039

    Article  CAS  Google Scholar 

  21. Tang J, Tang H, Sun W, Radosz M, Shen Y (2005) Low-pressure CO2 sorption in ammonium-based poly(ionic liquid)s. Polymer 46:12460–12467

    Article  CAS  Google Scholar 

  22. Raja Shahrom MSh, Wilfred CD, Kh Ziyada Taha A (2016) CO2 capture by task specific ionic liquids (TSILs) and polymerized ionic liquids (PILs and AAPILs). J Mol Liq 219:306–312

    Article  CAS  Google Scholar 

  23. Yu CH, Huang CH, Tan CS (2012) A Review of CO2 Capture by Absorption and Adsorption, Aerosol and Air Quality Research 12:745–769

  24. Tang J, Tang H, Sun W, Plancher H, Radosz M, Shen Y (2005) Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun 26:3325–3327

    Google Scholar 

  25. Privalova EI, Karjalainen E, Nurmi M, Maki-Arvela P, Eranen K, Tenhu H, Yu Murzin D, Yu Mikkola JP (2013) Imidazolium-based poly(ionic liquid)s as new alternatives for CO2 capture. Chemsuschem 6:1500–1509

    Article  CAS  PubMed  Google Scholar 

  26. Raja Shahrom MSh, Wilfred CD, MacFarlane DR, Vijayraghavan R, Kait ChF (2019) Amino acid based poly(ionic liquid) materials for CO2 capture: effect of anion. J Mol Liq 25:644–652

    Article  Google Scholar 

  27. Noorani N, Mehrdad A, Zarei Diznab R (2022) Thermodynamic study on carbon dioxide absorption in vinyl imidazolium–amino acid ionic liquids. Fluid Phase Equilib 557:113433

    Article  CAS  Google Scholar 

  28. McMurry J (2011) Fundamentals of organic chemistry, 7th edn. Cengage Learning, USA, pp 506–507

    Google Scholar 

  29. Muldoon MJ, Gordon CM (2004) Synthesis of gel-type polymer beads from ionic liquid monomers. J Polym Sci Part A: Polym Chem 42:3865–3869

    Article  CAS  Google Scholar 

  30. Noorani N, Mehrdad A (2021) CO2 adsorption onto 1-butyl-3-vinylimidazolium based poly(ionic liquid)s: experimental and theoretical studies. J Polym Res 28:346

    Article  CAS  Google Scholar 

  31. Tiemblo P, Guzman J, Riande E, Mijangos C, Herrero M, Espeso J (2002) Reinecke H, Diffusion of small molecules through modified poly(vinyl chloride) membranes. J Polym Sci Part B: Polymer Physics 40:964–971

    Article  CAS  Google Scholar 

  32. Noorani N, Mehrdad A (2021) Experimental and theoretical study of CO2 sorption in biocompatible and biodegradable cholinium-based ionic liquids. Sep Purif Technol 254:117609

    Article  CAS  Google Scholar 

  33. Noorani N, Mehrdad A (2020) CO2 solubility in some amino acid-based ionic liquids: Measurement, correlation and DFT studies. Fluid Phase Equilib 517:112591

    Article  CAS  Google Scholar 

  34. Noorani N, Mehrdad, (2019) A Study of CO2 adsorption onto poly(1–vinylimidazole) using quartz crystal microbalance and density functional theory methods. J Mol Liq 291:111288

    Article  Google Scholar 

  35. Noorani N, Mehrdad A (2019) Adsorption, permeation, and DFT studies of PVC/PVIm blends for separation of CO2/CH4. J Mol Liq 292:111410

    Article  Google Scholar 

  36. Noorani N, Mehrdad A (2020) Modification of PVC with 1-vinylimidazole for CO2/CH4 separation: sorption, permeation and DFT studies. Phys Chem Res 8:689–703

    CAS  Google Scholar 

  37. Goodrich BF, de la Fuente JC, Gurkan BE, Zadigian DJ, Price EA, Huang Y, Brennecke JF (2011) Experimental measurements of amine-functionalized anion-tethered ionic liquids with carbon dioxide. Ind Eng Chem Res 50:111–118

    Article  CAS  Google Scholar 

  38. Sistla YS, Khanna A (2014) CO2 absorption studies in amine functionalized ionic liquids. J Ind Eng Chem 20:2497–2509

    Article  CAS  Google Scholar 

  39. Muhammad N, Man ZB, Azmi Bustam M, Abdul Mutalib MI, Wilfred CD, Rafiq S (2011) Synthesis and thermophysical properties of low viscosity amino acid-based ionic liquids. J Chem Eng Data 56:3157–3162

    Article  CAS  Google Scholar 

  40. Zhang Y, Zhang S, Lu X, Zhou Q, Fan W, Zhang XP (2009) Dual amino-functionalised phosphonium ionic liquids for CO2 capture. Chem Eur J 15:3003–3011

    Article  CAS  PubMed  Google Scholar 

  41. Torralba-Calleja E, Skinner J, Gutierrez-Tauste D (2013) CO2 capture in ionic liquids: a review of solubilities and experimental methods. J Chem 2013:1–16

    Article  Google Scholar 

  42. Gurkan BE, de la Fuente JC, Mindrup EM, Ficke LE, Goodrich BF, Price EA, Schneider WF, Brennecke JF (2010) Equimolar CO2 absorption by anion-functionalized ionic liquids. J Am Chem Soc 132:2116–2117

    Article  CAS  PubMed  Google Scholar 

  43. Chen YF, Zhang YY, Yuan SJ, Ji XY, Liu C, Yang ZH, Lu XH (2016) Thermodynamic study for gas absorption in choline-2-pyrrolidine-carboxylic acid+ polyethylene glycol. J Chem Eng Data 61:3428–3437

    Article  CAS  Google Scholar 

  44. Huang K, Zhang XM, Hu XB, Wu YT (2016) Hydrophobic protic ionic liquids tethered with tertiary amine group for highly efficient and selective absorption of H2S from CO2. AlChE J 62:4480–4490

    Article  CAS  Google Scholar 

  45. Zhou ZM, **g GH, Zhou LJ (2012) Characterization and absorption of carbon dioxide into aqueous solution of amino acid ionic liquid [N1111][Gly] and 2-amino-2-methyl-1-propanol. Chem Eng J 204:235–243

    Article  Google Scholar 

  46. Zoubeik M, Henni A (2014) Experimental and thermodynamic study of CO2 solubility in promising [TF2N and DCN] ionic liquids. Fluid Phase Equilib 376:22–30

    Article  CAS  Google Scholar 

  47. Kurnia KA, Harris F, Wilfred CD, Mutalib MIA, Murugesan T (2009) Thermodynamic properties of CO2 absorption in hydroxyl ammonium ionic liquids at pressures of (100–1600) kPa. J Chem Thermodyn 41:1069–1073

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Author Contribution Both authors contributed to the study conception and design. Data duration, writing-original draft preparation, visualization, investigation, conceptualization, methodology, validation, writing-reviewing and editing by NN and AM. The first draft of the manuscript was written by NN and AM commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Abbas Mehrdad.

Ethics declarations

Conflict of Interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 411 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noorani, N., Mehrdad, A. Evaluating Biocompatible Amino Acid-Based Poly(ionic liquid)s for CO2 Absorption. J Polym Environ 31, 3740–3753 (2023). https://doi.org/10.1007/s10924-023-02858-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02858-2

Keywords

Navigation