Log in

A Review of Waterborne Polyurethane Coatings and Adhesives with Polyester Polyol from Poly(Ethylene Terephthalate) Waste

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The aim of this review article is to show the most recent research on obtaining waterborne polyurethane (WPU) coatings and adhesives using polyester polyol from polyethylene terephthalate (PET) waste, and describing their properties, in the search for a more sustainable product. WPU is obtained in two stages: (1) PET-based polyester polyol synthesis and (2) WPU synthesis. In the first stage, glycolysis is the most widely used degradation method for PET and zinc acetate catalyst to obtain polyester polyol, resulting in oligoesters. Studies with different degradation agents (propylene glycol, triethylene glycol and polyethylene glycol) of PET were highlighted, resulting in different oligoesters. A trend was observed in polyester polyol from the reaction of the post-consumption PET oligoester of using vegetable oil, particularly castor oil. A promising process was also found to obtain PU from polyester polyol in a single stage with renewable oil, which traditionally involves two stages. In the second stage, the processes using acetone solvent and prepolymer mixture were the most commonly used to prepare WPUs. The different synthesis pathways result in different WPU properties, which consequently serve different markets. It was found that adding polyester polyol to the flexible segment of WPUs (synthesized with PET and vegetable oil) led to a more flexible product, an important quality for coatings and adhesives. The presence of cutting agents, chain extenders and nanoparticles had a positive influence on the thermal stability of WPUs. The thermal degradation temperature of WPUs increased by up to 19 °C when PET oligoesters were used for their synthesis, compared to those synthesized without PET oligoesters. Moreover, the initial WPU degradation temperature can increase by up to 60%, depending on the type of glycol (propylene glycol, triethylene glycol, polyethylene glycol) and the PET/glycol molar ratio used in oligoester synthesis (1:2 or 1:10).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

APTES:

3-Aminopropyl)triethoxysilane

BD:

1,4-Butane diol

BHET:

Bis(2-hydroxyethyl) terephthalate

BHETA:

Bis(2-hydroxyethyl terephthalamide)

DEA:

Diethanolamine

DEG:

Diethylene glycol

DMF:

N,N-dimetylformamide

DMPA:

Dimethylolpropionic acid

DPG:

Dipropylene glycol

DSC:

Differential scanning calorimetry

EDA:

Ethylene diamine

EG:

Ethylene glycol

FTIR:

Fourier-transformed infrared spectroscopy

HMDI:

Hexamethylene diisocyanate

HMMM:

Hexamethoxymethylmelamine

IPDI:

Isophorone diisocyanate

MDEA:

N-methyldiethalomine

MDI:

Methylene diphenylisocyanate

MEA:

Monoethanolamine

MEK:

Methyl ethyl ketone

MWCNT:

Multi-walled carbon nanotubes

NaMs:

Sodium metasilicate

NPG:

Neopentyl glycol

PCL:

Polycaprolactone

PEG:

Polyethylene glycol

PET:

Polyethylene terephthalate

PG:

Propylene glycol

PPG:

Polypropylene glycol

PU:

Polyurethane

TDI:

Toluene diisocyanate

TEA:

Triethyl amine

TEG:

Triethylene glycol

Tg:

Glass transition temperature

TGA:

Thermogravimetric analysis

TMP:

Trimethylolpropane

Tonset :

Initial decomposition temperature

TPA:

Terephthalic acid

VOC:

Volatile organic compound

WPU:

Waterborne polyurethane

References

  1. Sawpan MA (2018) Polyurethanes from vegetable oils and applications: a review. J Polym Res. https://doi.org/10.1007/s10965-018-1578-3

    Article  Google Scholar 

  2. Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR (2016) Polyurethane types, synthesis and applications—a review. RSC Adv 6:114453–114482. https://doi.org/10.1039/c6ra14525f

    Article  CAS  Google Scholar 

  3. Golling FE, Pires R, Hecking A, Weikard J, Richter F, Danielmeier K, Dijkstra D (2019) Polyurethanes for coatings and adhesives—chemistry and applications. Polym Int 68:848–855. https://doi.org/10.1002/pi.5665

    Article  CAS  Google Scholar 

  4. Uscátegui YL, Arévalo-Alquichire SJ, Gómez-Tejedor JA, Vallés-Lluch A, Díaz LE, Valero MF (2017) Polyurethane-based bioadhesive synthesized from polyols derived from castor oil (Ricinus communis) and low concentration of chitosan. J Mater Res 32:3699–3711. https://doi.org/10.1557/jmr.2017.371

    Article  CAS  Google Scholar 

  5. Aristri MA, Adly M, Lubis R, Yadav SM, Antov P, Papadopoulos AN, Pizzi A, Fatriasari W, Ismayati M, Iswanto AH (2021) Recent developments in lignin-and tannin-based non-isocyanate polyurethane resins for wood adhesives—a review. Appl Sci 11:4242. https://doi.org/10.3390/app11094242

    Article  CAS  Google Scholar 

  6. Kale MB, Luo Z, Zhang X, Dhamodharan D, Divakaran N, Mubarak S, Wu L, Xu Y (2019) Waterborne polyurethane/graphene oxide-silica nanocomposites with improved mechanical and thermal properties for leather coatings using screen printing. Polymer (Guildf) 170:43–53. https://doi.org/10.1016/j.polymer.2019.02.055

    Article  CAS  Google Scholar 

  7. Dong F, Meschter SJ, Cho J (2019) Improved adhesion of polyurethane-based coatings to tin surface. J Mater Sci Mater Electron 30:7268–7279. https://doi.org/10.1007/s10854-019-01040-6

    Article  CAS  Google Scholar 

  8. Sengupta R, Chakraborty S, Bandyopadhyay S, Dasgupta S, Mukhopadhyay R, Auddy K, Deuri AS (2007) The morphology and mechanical properties of sodium alginate based electrospun poly(ethylene oxide) nanofiber. Polym Eng Sci 47:21–25. https://doi.org/10.1002/pen

    Article  Google Scholar 

  9. Da Costa W, Silva LGA, Wiebeck H (2011) Comportamento das forças de aderência do adesivo selante de silicone e do mastic butílico. Polimeros 21:23–26. https://doi.org/10.1590/S0104-14282011005000013

    Article  Google Scholar 

  10. Shamsi R, Abdouss M, Sadeghi GMM, Taromi FA (2009) Synthesis and characterization of novel polyurethanes based on aminolysis of poly(ethylene terephthalate) wastes, and evaluation of their thermal and mechanical properties. Polym Int 58:22–30. https://doi.org/10.1002/pi.2488

    Article  CAS  Google Scholar 

  11. Boton L, Puguan JM, Latif M, Kim H (2018) Synthesis and properties of quick-drying UV-curable hyperbranched waterborne polyurethane coating. Prog Org Coatings. https://doi.org/10.1016/j.porgcoat.2018.09.017

    Article  Google Scholar 

  12. Raheem AB, Noor ZZ, Hassan A, Abd Hamid MK, Samsudin SA, Sabeen AH (2019) Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: a review. J Clean Prod 225:1052–1064. https://doi.org/10.1016/j.jclepro.2019.04.019

    Article  CAS  Google Scholar 

  13. Muhammad Zain N, Ghazali FA, Roslin EN (2018) Potential of natural oil-based polyurethane as an adhesive for particleboard production: a review. Int. J. Mech. Eng. Technol. 9:1485–1493

    Google Scholar 

  14. Prajapati R, Kohli K, Maity SK, Sharma BK (2021) Potential chemicals from plastic wastes. Molecules 26:1–22. https://doi.org/10.3390/molecules26113175

    Article  CAS  Google Scholar 

  15. Furtwengler P, Avérous L (2018) Renewable polyols for advanced polyurethane foams from diverse biomass resources. Polym Chem 9:4258–4287. https://doi.org/10.1039/c8py00827b

    Article  CAS  Google Scholar 

  16. Noreen A, Zia KM, Zuber M, Tabasum S, Saif MJ (2016) Recent trends in environmentally friendly water-borne polyurethane coatings: a review. Korean J Chem Eng 33:388–400. https://doi.org/10.1007/s11814-015-0241-5

    Article  CAS  Google Scholar 

  17. Sahoo S, Mohanty S, Nayak SK (2018) Biobased polyurethane adhesive over petroleum based adhesive: use of renewable resource. J Macromol Sci Part A 55:36–48. https://doi.org/10.1080/10601325.2017.1387486

    Article  CAS  Google Scholar 

  18. Mumtaz F, Zuber M, Zia KM, Jamil T, Hussain R (2013) Synthesis and properties of aqueous polyurethane dispersions: influence of molecular weight of polyethylene glycol. Korean J Chem Eng 30:2259–2263. https://doi.org/10.1007/s11814-013-0166-9

    Article  CAS  Google Scholar 

  19. Cao X, Ge X, Chen H, Li W (2017) Effects of trimethylol propane and AAS salt on properties of waterborne polyurethane with low gloss. Prog Org Coatings 107:5–13. https://doi.org/10.1016/j.porgcoat.2017.02.021

    Article  CAS  Google Scholar 

  20. Cakić SM, Ristić IS, Cincović MM, Stojiljković DT, Budinski-Simendić JK (2016) Preparation and characterization of waterborne polyurethane/silica hybrid dispersions from castor oil polyols obtained by glycolysis poly(ethylene terephthalate) waste. Int J Adhes Adhes 70:329–341. https://doi.org/10.1016/j.ijadhadh.2016.07.010

    Article  CAS  Google Scholar 

  21. Cakić SM, Ristić IS, Cincović MM, Nikolić NČ, Nikolić LB, Cvetinov MJ (2017) Synthesis and properties biobased waterborne polyurethanes from glycolysis product of PET waste and poly(caprolactone) diol. Prog Org Coatings 105:111–122. https://doi.org/10.1016/j.porgcoat.2016.10.038

    Article  CAS  Google Scholar 

  22. Gandara M, Gonçalves AR, Saron C (2017) Composites of recycled PET and sugarcane fiber treated by steam explosion. Rev Matér. 22:1–10. https://doi.org/10.1590/S1517-707620170004.0224

    Article  Google Scholar 

  23. Ikladious NE, Asaad JN, Emira HS, Mansour SH (2017) Progress in organic coatings Alkyd resins based on hyperbranched polyesters and PET waste for coating applications. Prog Org Coatings 102:217–224. https://doi.org/10.1016/j.porgcoat.2016.10.015

    Article  CAS  Google Scholar 

  24. Upasani PS, Jain AK, Save N, Agarwal US, Kelkar AK (2012) Chemical recycling of PET flakes into yarn. J Appl Polym Sci 123:520–525. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  25. Barnard E, Rubio Arias JJ, Thielemans W (2021) Chemolytic depolymerisation of PET: a review. Green Chem 23:3765–3789. https://doi.org/10.1039/d1gc00887k

    Article  CAS  Google Scholar 

  26. Cakić SM, Valcic MD, Ristić IS, Radusin T, Cvetinov MJ, Budinski-Simendić J (2019) Waterborne polyurethane-silica nanocomposite adhesives based on castor oil-recycled polyols: Effects of (3-aminopropyl)triethoxysilane (APTES) content on properties. Int J Adhes Adhes 90:22–31. https://doi.org/10.1016/j.ijadhadh.2019.01.005

    Article  CAS  Google Scholar 

  27. Khoonkari M, Haghighi AH, Sefidbakht Y, Shekoohi K, Ghaderian A (2015) Chemical recycling of PET wastes with different catalysts. Int J Polym Sci 2015:1–11. https://doi.org/10.1155/2015/124524

    Article  CAS  Google Scholar 

  28. Damayanti, Wu HS (2021) Strategic possibility routes of recycled pet. Polymers (Basel) 13:1–37. https://doi.org/10.3390/polym13091475

    Article  CAS  Google Scholar 

  29. Cakić SM, Ristić IS, Cincović MM, Nikolić NČ, Ilić OZ, Stojiljković DT, Simendić JKB (2012) Glycolyzed products from PET waste and their application in synthesis of polyurethane dispersions. Prog. Org. Coatings. 74:115–124. https://doi.org/10.1016/j.porgcoat.2011.11.024

    Article  CAS  Google Scholar 

  30. Cakić SM, Ristić IS, Stojiljković DT, Nikolić NN, Todorović B, Radosavljević-Stevanović NV (2019) Effect of the silica nanofiller on the properties of castor oil-based waterborne polyurethane hybrid dispersions based on recycled PET waste. Polym Bull 76:1217–1238. https://doi.org/10.1007/s00289-018-2429-4

    Article  CAS  Google Scholar 

  31. Jasiukaitytė-Grojzdek E, Kunaver M, Kukanja D, Moderc D (2013) Renewable (waste) material based polyesters as plasticizers for adhesives. Int J Adhes Adhes 46:56–61. https://doi.org/10.1016/j.ijadhadh.2013.05.015

    Article  CAS  Google Scholar 

  32. Phetphaisit CW, Bumee R, Namahoot J, Ruamcharoen J, Ruamcharoen P (2013) Polyurethane polyester elastomer: innovative environmental friendly wood adhesive from modified PETs and hydroxyl liquid natural rubber polyols. Int J Adhes Adhes 41:127–131. https://doi.org/10.1016/j.ijadhadh.2012.11.007

    Article  CAS  Google Scholar 

  33. Geyer B, Lorenz G, Kandelbauer A (2016) Recycling of poly(ethylene terephthalate)—a review focusing on chemical methods. Exp. Polym Lett 10:559–586. https://doi.org/10.3144/expresspolymlett.2016.53

    Article  CAS  Google Scholar 

  34. Tawfik SY, Sabaa MW, Botros RT (2017) Preparation and characterisation of water soluble polyester coatings based on waste materials. Pigment Resin Technol 46:408–422. https://doi.org/10.1108/PRT-07-2016-0072

    Article  CAS  Google Scholar 

  35. Zhou X, Fang C, Yu Q, Yang R, **e L, Cheng Y, Li Y (2017) Synthesis and characterization of waterborne polyurethane dispersion from glycolyzed products of waste polyethylene terephthalate used as soft and hard segment. Int J Adhes Adhes 74:49–56. https://doi.org/10.1016/j.ijadhadh.2016.12.010

    Article  CAS  Google Scholar 

  36. Fang C, Yang R (2018) Dispersion of multiwalled carbon nanotubes in waterborne polyurethane emulsions derived from alcoholysis products of waste PET and its effect on properties. Polym Eng Sci 58:2149–2155. https://doi.org/10.1002/pen

    Article  CAS  Google Scholar 

  37. Teixeira NA, Miyazaki DMS, Grassi MT, Zawadzki SF, Abate G (2020) Application of a new adhesive elastomeric coating and hydrophilic–lipophilic-balanced sorbent for modified stir-bar sorptive extraction. Anal Methods 12:5815–5822. https://doi.org/10.1039/D0AY01594F

    Article  CAS  PubMed  Google Scholar 

  38. Li Q, He H, Zhang C, Liang X, Shen Y (2022) Research on synthesis of polyurethane based on a new chain extender obtained from waste polyethylene terephthalate. J Appl Polym Sci. https://doi.org/10.1002/APP.52402

    Article  Google Scholar 

  39. Beneš H, Slabá J, Walterová Z, Rais D (2013) Recycling of waste poly(ethylene terephthalate) with castor oil using microwave heating. Polym Degrad Stab 98:2232–2243. https://doi.org/10.1016/j.polymdegradstab.2013.08.019

    Article  CAS  Google Scholar 

  40. Cakić SM, Ristić IS, Cincović MM, Stojiljković DT, János CJ, Miroslav CJ, Stamenković JV (2015) Glycolyzed poly(ethylene terephthalate) waste and castor oil-based polyols for waterborne polyurethane adhesives containing hexamethoxymethyl melamine. Prog Org Coatings 78:357–368. https://doi.org/10.1016/j.porgcoat.2014.07.012

    Article  CAS  Google Scholar 

  41. Adamu AA, Muhamad Sarih N, Gan SN (2021) Polyurethane resin derived from polyol of palm olein and recycled poly(ethylene terephthalate). Pigment Resin Technol. 51:6–12. https://doi.org/10.1108/PRT-06-2020-0056/FULL/XML

    Article  Google Scholar 

  42. Cevher D, Sürdem S (2021) Polyurethane adhesive based on polyol monomers BHET and BHETA depolymerised from PET waste. Int J Adhes Adhes 105:102799. https://doi.org/10.1016/j.ijadhadh.2020.102799

    Article  CAS  Google Scholar 

  43. Kirchherr J, Reike D, Hekkert M (2017) Conceptualizing the circular economy: an analysis of 114 definitions. Resour Conserv Recycl 127:221–232. https://doi.org/10.1016/j.resconrec.2017.09.005

    Article  Google Scholar 

  44. Mecit O, Akar A (2001) Synthesis of urethane oil varnishes from waste poly(ethylene terephthalate). Macromol Mater Eng 286:513–515. https://doi.org/10.1002/1439-2054(20010901)286:9%3c513::AID-MAME513%3e3.0.CO;2-J

    Article  CAS  Google Scholar 

  45. Mosadeghzad Z, Ahmad I, Daik R, Ramli A, Jalaludin Z (2009) Preparation and properties of acacia sawdust/UPR composite based on recycled PET. Malaysian Polym. J. 4:30–41

    Google Scholar 

  46. Elsaeed SM, Farag RK (2009) Synthesis and characterization of unsaturated polyesters based on the aminolysis of poly(ethylene terephthalate). J Appl Polym Sci 112:3327–3336. https://doi.org/10.1002/app.29527

    Article  CAS  Google Scholar 

  47. Somarathna HMCC, Raman SN, Mohotti D, Mutalib AA, Badri KH (2018) The use of polyurethane for structural and infrastructural engineering applications: a state-of-the-art review. Constr Build Mater 190:995–1014. https://doi.org/10.1016/j.conbuildmat.2018.09.166

    Article  CAS  Google Scholar 

  48. Sun M, Ren X, Zhang J, Zhang X, Wang H (2019) Preparation and characterization of one-component polyurethane powder adhesives by the solution polymerization technology. J Appl Polym Sci 136:1–9. https://doi.org/10.1002/app.47898

    Article  CAS  Google Scholar 

  49. Dubelley F, Bas C, Planes E, Pons E, Yrieix B, Flandin L (2018) Durability of polymer metal multilayer: focus on the adhesive chemical degradation. Front Chem 6:1–12. https://doi.org/10.3389/fchem.2018.00459

    Article  CAS  Google Scholar 

  50. Lei L, Zhong L, Lin X, Li Y, **a Z (2014) Synthesis and characterization of waterborne polyurethane dispersions with different chain extenders for potential application in waterborne ink. Chem Eng J 253:518–525. https://doi.org/10.1016/j.cej.2014.05.044

    Article  CAS  Google Scholar 

  51. Wang L, Shen Y, Lai X, Li Z, Liu M (2011) Synthesis and properties of crosslinked waterborne polyurethane. J Polym Res 18:469–476. https://doi.org/10.1007/s10965-010-9438-9

    Article  CAS  Google Scholar 

  52. Feng J, Lu Q, Tan W, Chen K, Ouyang P (2019) The influence of the NCO/OH ratio and the 1,6-hexanediol/dimethylol propionic acid molar ratio on the properties of waterborne polyurethane dispersions based on 1,5-pentamethylene diisocyanate. Front Chem Sci Eng 13:80–89. https://doi.org/10.1007/s11705-018-1763-2

    Article  CAS  Google Scholar 

  53. Vilar WD (2002) Chemistry and tecnology of polyurethanes. Rhodia Solvay Gr. 2002:1–360

    Google Scholar 

  54. Patel MR, Patel JV, Mishra D, Sinha VK (2007) Synthesis and characterization of low volatile content polyurethane dispersion from depolymerised polyethylene terphthalate. J Polym Environ 15:97–105. https://doi.org/10.1007/s10924-007-0050-y

    Article  CAS  Google Scholar 

  55. Heinrich LA (2019) Future opportunities for bio-based adhesives—advantages beyond renewability. Green Chem 21:1866–1888. https://doi.org/10.1039/c8gc03746a

    Article  CAS  Google Scholar 

  56. John G, Nagarajan S, Vemula PK, Silverman JR, Pillai CKS (2019) Natural monomers: a mine for functional and sustainable materials—occurrence, chemical modification and polymerization. Prog Polym Sci 92:158–209. https://doi.org/10.1016/j.progpolymsci.2019.02.008

    Article  CAS  Google Scholar 

  57. Kreye O, Mutlu H, Meier MAR (2013) Sustainable routes to polyurethane precursors. Green Chem 15:1431–1455. https://doi.org/10.1039/c3gc40440d

    Article  CAS  Google Scholar 

  58. Saetung A, Rungvichaniwat A, Tsupphayakorn-ake P, Bannob P, Tulyapituk T, Saetung N (2016) Properties of waterborne polyurethane films: effects of blend formulation with hydroxyl telechelic natural rubber and modified rubber seed oils. J Polym Res 23:264. https://doi.org/10.1007/s10965-016-1160-9

    Article  CAS  Google Scholar 

  59. Tenorio-Alfonso A, Sánchez MC, Franco JM (2020) A review of the sustainable approaches in the production of bio-based polyurethanes and their applications in the adhesive field. J Polym Environ 28:749–774. https://doi.org/10.1007/s10924-020-01659-1

    Article  CAS  Google Scholar 

  60. Moghadam PN, Yarmohamadi M, Hasanzadeh R, Nuri S (2016) Preparation of polyurethane wood adhesives by polyols formulated with polyester polyols based on castor oil. Int J Adhes Adhes 68:273–282. https://doi.org/10.1016/j.ijadhadh.2016.04.004

    Article  CAS  Google Scholar 

  61. Valero MF, Gonzalez A (2012) Polyurethane adhesive system from castor oil modified by a transesterification reaction. J Elastomers Plast 44:433–442. https://doi.org/10.1177/0095244312437155

    Article  CAS  Google Scholar 

  62. Marques AC, Mocanu A, Tomić NZ, Balos S, Stammen E, Lundevall A, Abrahami ST, Günther R, de Kok JMM, de Freitas ST (2020) Review on adhesives and surface treatments for structural applications: recent developments on sustainability and implementation for metal and composite substrates. Materials (Basel) 13:1–43. https://doi.org/10.3390/ma13245590

    Article  CAS  Google Scholar 

  63. Siddiqui MN, Redhwi HH, Al-Arfaj AA, Achilias DS (2021) Chemical recycling of PET in the presence of the bio-based polymers PLA, PHB and PEF: a review. Sustain 13:1–26. https://doi.org/10.3390/su131910528

    Article  CAS  Google Scholar 

  64. Gayathri V, Sheyara RTB, Devassy N, Samanta D (2022) Investigating the degradation of PET utilizing NHC-based catalysts and effective reuse of the degradation product as an additive with polyurethane adhesive material. J Appl Polym Sci. https://doi.org/10.1002/app.52474

    Article  Google Scholar 

  65. Pham CT, Nguyen BT, Nguyen MT, Nguyen TH, Hoang CN, Ngan Nguyen N, Lee PC, Kim J, Hoang DQ (2021) The advancement of bis(2-hydroxyethyl)terephthalate recovered from post-consumer poly(ethylene terephthalate) bottles compared to commercial polyol for preparation of high performance polyurethane. J Ind Eng Chem 93:196–209. https://doi.org/10.1016/j.jiec.2020.09.024

    Article  CAS  Google Scholar 

  66. Dutt K, Soni RK (2013) A review on synthesis of value added products from polyethylene terephthalate (PET) waste. Polym Sci Ser B 55:430–452. https://doi.org/10.1134/S1560090413070075

    Article  CAS  Google Scholar 

  67. Sadeghi GMM, Shamsi R, Sayaf M (2011) From aminolysis product of PET waste to novel biodegradable polyurethanes. J Polym Environ 19:522–534. https://doi.org/10.1007/s10924-011-0283-7

    Article  CAS  Google Scholar 

  68. Acar M, Orbay I (2011) Aminoglycolysis of waste poly(ethylene terephthalate) with diethanolamine and evaluation of the products as aminoglycolysis of waste poly(ethylene terephthalate) with diethanolamine and evaluation of the products as polyurethane surface coating materials. Polym Eng Sci. https://doi.org/10.1002/pen

    Article  Google Scholar 

  69. Sinha VK, Patel MR, Patel JV (2010) Pet waste management by chemical recycling : a review. J Polym Environ. https://doi.org/10.1007/s10924-008-0106-7

    Article  Google Scholar 

  70. Du JT, Sun Q, Zeng XF, Wang D, Wang JX, Chen JF (2020) ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate. Chem Eng Sci 220:115642. https://doi.org/10.1016/j.ces.2020.115642

    Article  CAS  Google Scholar 

  71. Jiang Z, Yan D, **n J, Li F, Guo M, Zhou Q, Xu J, Hu Y, Lu X (2022) Poly(ionic liquid)s as efficient and recyclable catalysts for methanolysis of PET. Polym Degrad Stab 199:109905. https://doi.org/10.1016/j.polymdegradstab.2022.109905

    Article  CAS  Google Scholar 

  72. Siddiqui MN, Redhwi HH, Achilias DS (2012) Recycling of poly(ethylene terephthalate) waste through methanolic pyrolysis in a microwave reactor. J Anal Appl Pyrolysis 98:214–220. https://doi.org/10.1016/j.jaap.2012.09.007

    Article  CAS  Google Scholar 

  73. Hoang CN, Le TTN, Hoang QD (2019) Glycolysis of poly(ethylene terephthalate) waste with diethyleneglycol under microwave irradiation and ZnSO4.7h2o catalyst. Polym Bull 76:23–34. https://doi.org/10.1007/s00289-018-2369-z

    Article  CAS  Google Scholar 

  74. Sabnis AS, Bhave VG, Kathalewar MS, Mare S, Raut PP (2012) New polyester polyol derived from recycled poly (ethylene terephthalate) for coating application. Arch Appl Sci Res 4:85–93

    CAS  Google Scholar 

  75. López-Fonseca R, Duque-Ingunza I, de Rivas B, Arnaiz S, Gutiérrez-Ortiz JI (2010) Chemical recycling of post-consumer PET wastes by glycolysis in the presence of metal salts. Polym Degrad Stab 95:1022–1028. https://doi.org/10.1016/j.polymdegradstab.2010.03.007

    Article  CAS  Google Scholar 

  76. Lu J, Li M, Li Y, Li X, Gao Q, Ge M (2019) Synthesis and sizing performances of water-soluble polyester based on bis(2-hydroxyethyl) terephthalate derived from depolymerized waste poly(ethylene terephthalate) fabrics. Text Res J 89:572–579. https://doi.org/10.1177/0040517517750652

    Article  CAS  Google Scholar 

  77. Park R, Sridhar V, Park H (2020) Taguchi method for optimization of reaction conditions in microwave glycolysis of waste PET. J Mater Cycles Waste Manag 22:664–672. https://doi.org/10.1007/s10163-019-00958-7

    Article  CAS  Google Scholar 

  78. Shukla SR, Harad AM (2006) Aminolysis of polyethylene terephthalate waste. Polym Degrad Stab 91:1850–1854. https://doi.org/10.1016/j.polymdegradstab.2005.11.005

    Article  CAS  Google Scholar 

  79. Tawfik ME, Eskander SB (2010) Chemical recycling of poly(ethylene terephthalate) waste using ethanolamine. Sorting of the end products. Polym Degrad Stab 95:187–194. https://doi.org/10.1016/j.polymdegradstab.2009.11.026

    Article  CAS  Google Scholar 

  80. Aslzadeh MM, Sadeghi GMM, Abdouss M (2010) Synthesis and characterization of BHETA based new polyurethanes. Materwiss Werksttech 41:682–688. https://doi.org/10.1002/mawe.201000584

    Article  CAS  Google Scholar 

  81. Ghorbantabar S, Ghiass M, Yaghobi N, Bouhendi H (2021) Investigation of conventional analytical methods for determining conversion of polyethylene terephthalate waste degradation via aminolysis process. J Mater Cycles Waste Manag 23:526–536. https://doi.org/10.1007/s10163-020-01149-5

    Article  CAS  Google Scholar 

  82. Ghosal K, Nayak C (2022) Recent advances in chemical recycling ofpolyethylene terephthalate waste into valueadded products for sustainable coating solutions. Mater. Adv. 2:1974–1992. https://doi.org/10.1039/D1MA01112J

    Article  Google Scholar 

  83. Zhou X, Li Y, Fang C, Li S, Cheng Y, Lei W, Meng X (2015) Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: a review. J Mater Sci Technol 31:708–722. https://doi.org/10.1016/j.jmst.2015.03.002

    Article  CAS  Google Scholar 

  84. **aojuan L, **aorui L, Lei W, Yiding S (2010) Synthesis and characterizations of waterborne polyurethane modified with 3-aminopropyltriethoxysilane. Polym Bull 65:45–57. https://doi.org/10.1007/s00289-009-0233-x

    Article  CAS  Google Scholar 

  85. García-Pacios V, Iwata Y, Colera M, Miguel Martín-Martínez J (2011) Influence of the solids content on the properties of waterborne polyurethane dispersions obtained with polycarbonate of hexanediol. Int J Adhes Adhes 31:787–794. https://doi.org/10.1016/j.ijadhadh.2011.05.010

    Article  CAS  Google Scholar 

  86. García-Pacios V, Costa V, Colera M, Miguel Martn-Martnez J (2010) Affect of polydispersity on the properties of waterborne polyurethane dispersions based on polycarbonate polyol. Int J Adhes Adhes 30:456–465. https://doi.org/10.1016/j.ijadhadh.2010.03.006

    Article  CAS  Google Scholar 

  87. Lei L, **a Z, Cao G, Zhong L (2014) Synthesis and adhesion property of waterborne polyurethanes with different ionic group contents. Colloid Polym Sci 292:527–532. https://doi.org/10.1007/s00396-013-3129-0

    Article  CAS  Google Scholar 

  88. Macijauskas G, Jankauskaite V (2013) Epoxy resin and polyurethane compositions from glycolized poly (ethylene terephthalate) wastes. Mater Sci 19:1392–1320. https://doi.org/10.1016/j.porgcoat.2010.04.024

    Article  CAS  Google Scholar 

  89. Kloss J, Munaro M, De Souza GP, Gulmine JV, Wang SH, Zawadzki S, Akcelrud L (2002) Poly(ester urethane)s with polycaprolactone soft segments: a morphological study. J Polym Sci Part A Polym Chem 40:4117–4130. https://doi.org/10.1002/pola.10499

    Article  CAS  Google Scholar 

  90. Kathalewar M, Dhopatkar N, Pacharane B, Sabnis A, Raut P, Bhave V (2013) Chemical recycling of PET using neopentyl glycol: Reaction kinetics and preparation of polyurethane coatings. Prog Org Coatings 76:147–156. https://doi.org/10.1016/j.porgcoat.2012.08.023

    Article  CAS  Google Scholar 

  91. Chen CH (2003) Study of glycolysis of poly(ethylene terephthalate) recycled from postconsumer soft-drink bottles. III. Further investigation. J Appl Polym Sci 87:2004–2010. https://doi.org/10.1002/APP.11694

    Article  CAS  Google Scholar 

  92. Thi Ho LN, Minh Ngo D, Cho J, Jung HM (2018) Enhanced catalytic glycolysis conditions for chemical recycling of glycol-modified poly(ethylene terephthalate). Polym Degrad Stab 155:15–21. https://doi.org/10.1016/j.polymdegradstab.2018.07.003

    Article  CAS  Google Scholar 

  93. ** G, Lu M, Sun C (2005) Study on depolymerization of waste polyethylene terephthalate into monomer of bis(2-hydroxyethyl terephthalate). Polym Degrad Stab 87:117–120. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2004.07.017

    Article  CAS  Google Scholar 

  94. Imran M, Kim DH, Al-Masry WA, Mahmood A, Hassan A, Haider S, Ramay SM (2013) Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis. Polym Degrad Stab 98:904–915. https://doi.org/10.1016/j.polymdegradstab.2013.01.007

    Article  CAS  Google Scholar 

  95. Fang C, Zhou X, Yu Q, Liu S, Guo D, Yu R, Hu J (2014) Synthesis and characterization of low crystalline waterborne polyurethane for potential application in water-based ink binder. Prog Org Coatings 77:61–71. https://doi.org/10.1016/j.porgcoat.2013.08.004

    Article  CAS  Google Scholar 

  96. Król P, Król B (2019) Structures, properties and applications of the polyurethane ionomers. J Mater Sci. https://doi.org/10.1007/s10853-019-03958-y

    Article  Google Scholar 

  97. Lin WT, Lee WJ (2017) Effects of the NCO/OH molar ratio and the silica contained on the properties of waterborne polyurethane resins. Colloids Surfaces Physicochem Eng Asp 522:453–460. https://doi.org/10.1016/j.colsurfa.2017.03.022

    Article  CAS  Google Scholar 

  98. Bhattacharyya A, Mukherjee D, Mishra R, Kundu PP (2017) Preparation of polyurethane–alginate/chitosan core shell nanoparticles for the purpose of oral insulin delivery. Eur Polym J 92:294–313. https://doi.org/10.1016/j.eurpolymj.2017.05.015

    Article  CAS  Google Scholar 

  99. Liang H, Feng Y, Lu J, Liu L, Yang Z, Luo Y, Zhang Y, Zhang C (2018) Bio-based cationic waterborne polyurethanes dispersions prepared from different vegetable oils. Ind Crops Prod 122:448–455. https://doi.org/10.1016/j.indcrop.2018.06.006

    Article  CAS  Google Scholar 

  100. Beneš H, Černá R, Ďuračková A, Látalová P (2012) Utilization of natural oils for decomposition of polyurethanes. J Polym Environ 20:175–185. https://doi.org/10.1007/s10924-011-0339-8

    Article  CAS  Google Scholar 

  101. Ivdre A, Soto GD, Cabulis U (2016) Polyols based on poly(ethylene terephthalate) and tall oil: perspectives for synthesis and production of rigid polyurethane foams. J Renew Mater 4:285–293. https://doi.org/10.7569/JRM.2016.634122

    Article  CAS  Google Scholar 

  102. Paruzel A, Michałowski S, Hodan J, Horák P, Prociak A, Beneš H (2017) Rigid polyurethane foam fabrication using medium chain glycerides of coconut oil and plastics from end-of-life vehicles. ACS Sustain Chem Eng 5:6237–6246. https://doi.org/10.1021/acssuschemeng.7b01197

    Article  CAS  Google Scholar 

  103. Beneš H, Paruzel A, Hodan J, Trhlíková O (2018) Impact of natural oil-based recycled polyols on properties of cast polyurethanes. J. Renew. Mater. 6:697–706. https://doi.org/10.32604/JRM.2018.00011

    Article  Google Scholar 

  104. Barboza ACRN, Cruz CVMS, Graziani MB, Lorenzetti MCF, Sabadini E (2001) Aquecimento em forno de microondas/Desenvolvimento de alguns conceitos fundamentais. Quim Nova 24:901–904

    Article  CAS  Google Scholar 

  105. Furukawa M, Mitsui Y, Fukumaru T, Kojio K (2005) Microphase-separated structure and mechanical properties of novel polyurethane elastomers prepared with ether based diisocyanate. Polymer (Guildf) 46:10817–10822. https://doi.org/10.1016/j.polymer.2005.09.009

    Article  CAS  Google Scholar 

  106. Xu W, Zhang R, Liu W, Zhu J, Dong X, Guo H, Hu GH (2016) A Multiscale investigation on the mechanism of shape recovery for IPDI to PPDI hard segment substitution in polyurethane. Macromolecules 49:5931–5944. https://doi.org/10.1021/acs.macromol.6b01172

    Article  CAS  Google Scholar 

  107. Rahman MM, Do Kim H (2007) Characterization of waterborne polyurethane adhesives containing different soft segments. J Adhes Sci Technol 21:81–96. https://doi.org/10.1163/156856107779976088

    Article  CAS  Google Scholar 

  108. Chen SG, Hu JW, Zhang MQ, Li MW, Rong MZ (2004) Gas sensitivity of carbon black/waterborne polyurethane composites. Carbon N Y 42:645–651. https://doi.org/10.1016/j.carbon.2004.01.002

    Article  CAS  Google Scholar 

  109. Scremin DM, Miyazaki DY, Lunelli CE, Silva SA, Zawadzki SF (2019) PET recycling by alcoholysis using a new heterogeneous catalyst: study and its use in polyurethane adhesives preparation. Macromol Symp 383:1800027. https://doi.org/10.1002/masy.201800027

    Article  CAS  Google Scholar 

  110. Wang TL, Hsieh TH (1997) Effect of polyol structure and molecular weight on the thermal stability of segmented poly(urethaneureas). Polym Degrad Stab 55:95–102. https://doi.org/10.1016/S0141-3910(96)00130-9

    Article  CAS  Google Scholar 

  111. Petrović ZS, Zavargo Z, Flyn JH, Macknight WJ (1994) Thermal degradation of segmented polyurethanes. J Appl Polym Sci 51:1087–1095. https://doi.org/10.1002/APP.1994.070510615

    Article  Google Scholar 

  112. Mohamed HA, Badran BM, Rabie AM, Morsi SMM (2014) Synthesis and characterization of aqueous (polyurethane/aromatic polyamide sulfone) copolymer dispersions from castor oil. Prog Org Coatings 77:965–974. https://doi.org/10.1016/j.porgcoat.2014.01.026

    Article  CAS  Google Scholar 

  113. Iliut M, Silva C, Herrick S, McGlothlin M, Vijayaraghavan A (2016) Graphene and water-based elastomers thin-film composites by dip-moulding. Carbon N Y 106:228–232. https://doi.org/10.1016/j.carbon.2016.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kim HJ, Han J, Son Y (2017) Mechanical properties, thermal stability, and glass transition behaviors of a waterborne polyurethane/graphene oxide nanocomposite. Mater Trans 58:892–897. https://doi.org/10.2320/matertrans.M2016411

    Article  CAS  Google Scholar 

  115. Zeng Z, Chen M, ** H, Li W, Xue X, Zhou L, Pei Y, Zhang H, Zhang Z (2016) Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon N Y 96:768–777. https://doi.org/10.1016/j.carbon.2015.10.004

    Article  CAS  Google Scholar 

  116. Wu Z, Wang H, Xue M, Tian X, Zhou H, Ye X, Zheng K, Cui Z (2015) Preparation of carbon nanotubes/waterborne polyurethane composites with the emulsion particles assisted dispersion of carbon nanotubes. Compos Sci Technol 114:50–56. https://doi.org/10.1016/j.compscitech.2015.02.020

    Article  CAS  Google Scholar 

  117. Du YF, Shi PW, Li QY, Li YC, Wu CF (2014) Effect of poly(sodium 4-styrenesulfonate) modified carbon black on the dispersion and properties of waterborne polyurethane nanocomposites. Colloids Surfaces Physicochem Eng Asp 454:1–7. https://doi.org/10.1016/j.colsurfa.2014.04.007

    Article  CAS  Google Scholar 

  118. Wu Z, Wang H, Tian X, Xue M, Ding X, Ye X, Cui Z (2014) Surface and mechanical properties of hydrophobic silica contained hybrid films of waterborne polyurethane and fluorinated polymethacrylate. Polymer (Guildf) 55:187–194. https://doi.org/10.1016/j.polymer.2013.11.019

    Article  CAS  Google Scholar 

  119. Fu H, Yan C, Zhou W, Huang H (2014) Nano-SiO2/fluorinated waterborne polyurethane nanocomposite adhesive for laminated film. J Ind Eng Chem 20:1623–1632. https://doi.org/10.1016/j.jiec.2015.04.023

    Article  CAS  Google Scholar 

  120. Christopher G, Anbu Kulandainathan M, Harichandran G (2015) Highly dispersive waterborne polyurethane/ZnO nanocomposites for corrosion protection. J. Coatings Technol. Res. 12:657–667. https://doi.org/10.1007/s11998-015-9674-3

    Article  CAS  Google Scholar 

  121. Recupido F, Lama GC, Ammendola M, Bossa FDL, Minigher A, Campaner P, Morena AG, Tzanov T, Ornelas M, Barros A, Gomes F, Bouça V, Malgueiro R, Sanchez M, Martinez E, Sorrentino L, Boggioni L, Perucca M, Anegalla S, Marzella R, Moimare P, Verdolotti L (2023) Rigid composite bio-based polyurethane foams: From synthesis to LCA analysis. Polymer (Guildf). 267:125674. https://doi.org/10.1016/j.polymer.2023.125674

    Article  CAS  Google Scholar 

  122. United Nations (2015) The 2030 Agenda for sustainable development. Arsenic research and global sustainability: Proceedings of the sixth international congress on arsenic in the environment (As2016). CRC Press, pp 1–41

    Google Scholar 

  123. Ivdre A, Abolins A, Sevastyanova I, Kirpluks M, Cabulis U, Merijs-Meri R (2020) Rigid polyurethane foams with various isocyanate indices based on polyols from rapeseed oil and waste PET. Polymers (Basel). https://doi.org/10.3390/POLYM12040738

    Article  PubMed  PubMed Central  Google Scholar 

  124. Paraskar PM, Prabhudesai MS, Hatkar VM, Kulkarni RD (2021) Vegetable oil based polyurethane coatings—a sustainable approach: a review. Prog Org Coatings. https://doi.org/10.1016/j.porgcoat.2021.106267

    Article  Google Scholar 

  125. Blue Weave Consulting (2022) Polyethylene Terephthalate (PET) Resin Market Size, Share & Growth | BlueWeave, Polyethyl. Terephthalate PET Resin Mark. 202–202. https://www.blueweaveconsulting.com/report/polyethylene-terephthalate-pet-resin-market. Accessed 19 Dec 2022

  126. Plastics Insight (2018) Polyethylene terephthalate (PET): production, price, market and its properties.

  127. Ghosal K, Nayak C (2022) Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions—hope vs. hype. Mater. Adv. 3:1974–1992. https://doi.org/10.1039/d1ma01112j

    Article  CAS  Google Scholar 

  128. Gomes TS, Visconte LLY, Pacheco EBAV (2019) Life cycle assessment of polyethylene terephthalate packaging: an overview. J Polym Environ. https://doi.org/10.1007/s10924-019-01375-5

    Article  Google Scholar 

  129. Schyns ZOG, Shaver MP (2021) Mechanical recycling of packaging plastics: a review. Macromol Rapid Commun 42:1–27. https://doi.org/10.1002/marc.202000415

    Article  CAS  Google Scholar 

  130. Martin EJP, Oliveira DSBL, Oliveira LSBL, Bezerra BS (2021) Life cycle comparative assessment of pet bottle waste management options: a case study for the city of Bauru, Brazil. Waste Manag 119:226–234. https://doi.org/10.1016/j.wasman.2020.08.041

    Article  CAS  PubMed  Google Scholar 

  131. Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29:2625–2643. https://doi.org/10.1016/j.wasman.2009.06.004

    Article  CAS  PubMed  Google Scholar 

  132. Sarda P, Hanan JC, Lawrence JG, Allahkarami M (2022) Sustainability performance of polyethylene terephthalate, clarifying challenges and opportunities. J Polym Sci 60:7–31. https://doi.org/10.1002/pol.20210495

    Article  CAS  Google Scholar 

  133. Shojaei B, Abtahi M, Najafi M (2020) Chemical recycling of PET: a step**-stone toward sustainability. Polym Adv Technol 31:2912–2938. https://doi.org/10.1002/pat.5023

    Article  CAS  Google Scholar 

  134. Smith RL, Takkellapati S, Riegerix RC (2022) Recycling of plastics in the united states: plastic material flows and polyethylene terephthalate (PET) recycling processes. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.1c06845

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gopal J, Elumalai G, Asilah A, Tajuddin H, Ito Y, Vajiravelu S (2022) Recyclable clay—supported heteropolyacid catalysts for complete glycolysis and aminolysis of post—consumer PET beverage bottles. J Polym Environ 30:2614–2630. https://doi.org/10.1007/s10924-022-02386-5

    Article  CAS  Google Scholar 

  136. Waskiewicz S, Langer E (2021) Synthesis of new oligoesterdiols based on waste poly(ethylene terephthalate) and dimerized fatty acid. Polymer (Guildf). 227:123832. https://doi.org/10.1016/j.polymer.2021.123832

    Article  CAS  Google Scholar 

  137. Payne J, Jones MD (2021) The chemical recycling of polyesters for a circular plastics economy: challenges and emerging opportunities. Chemsuschem 14:4041–4070. https://doi.org/10.1002/cssc.202100400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Khan A, Naveed M, Aayanifard Z, Rabnawaz M (2022) Efficient chemical recycling of waste polyethylene terephthalate. Resour Conserv Recycl 187:106639. https://doi.org/10.1016/j.resconrec.2022.106639

    Article  CAS  Google Scholar 

  139. Barot AA, Patel CM, Sinha VK (2017) Chemical recycling of used cloths: a sustainable and eco-economical approach. Int J Plast Technol 21:70–78. https://doi.org/10.1007/s12588-017-9170-y

    Article  CAS  Google Scholar 

  140. Marson A, Masiero M, Modesti M, Scipioni A, Manzardo A (2021) Life cycle assessment of polyurethane foams from polyols obtained through chemical recycling. ACS Omega 6:1718–1724. https://doi.org/10.1021/acsomega.0c05844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Klug V, Schöggl JP, Dallinger D, Hiebler K, Stueckler C, Steiner A, Arzt A, Kappe CO, Baumgartner RJ (2021) Comparative life cycle assessment of different production processes for waterborne polyurethane dispersions. ACS Sustain Chem Eng 9:8980–8989. https://doi.org/10.1021/acssuschemeng.1c01359

    Article  CAS  Google Scholar 

  142. Lligadas G, Ronda JC, Galià M, Cádiz V (2013) Renewable polymeric materials from vegetable oils: a perspective. Mater Today 16:337–343. https://doi.org/10.1016/j.mattod.2013.08.016

    Article  CAS  Google Scholar 

  143. Zolkarnain N, Yusoff S, Subramaniam V, Ghazali R, Abu Hassan H (2015) Evaluation of environmental impacts and GHG of palm polyol production using life cycle assessment approach. J. Oil Palm Res. 27:144–155

    CAS  Google Scholar 

  144. Fridrihsone A, Romagnoli F, Kirsanovs V, Cabulis U (2020) Life Cycle Assessment of vegetable oil based polyols for polyurethane production. J Clean Prod 266:121403. https://doi.org/10.1016/j.jclepro.2020.121403

    Article  CAS  Google Scholar 

  145. Helling RK, Russell DA (2009) Use of life cycle assessment to characterize the environmental impacts of polyol production options. Green Chem 11:380–438. https://doi.org/10.1039/b815833a

    Article  CAS  Google Scholar 

  146. Agnol LD, Dias FTG, Ornaghi HL, Sangermano M, Bianchi O (2021) UV-curable waterborne polyurethane coatings: a state-of-the-art and recent advances review. Prog Org Coatings. https://doi.org/10.1016/j.porgcoat.2021.106156

    Article  Google Scholar 

  147. Aizpurua J, Martin L, Fernández M, González A, Irusta L (2020) Recyclable, remendable and healing polyurethane/acrylic coatings from UV curable waterborne dispersions containing Diels-Alder moieties. Prog. Org. Coatings. 139:105460. https://doi.org/10.1016/j.porgcoat.2019.105460

    Article  CAS  Google Scholar 

  148. Dai M, Wang J, Zhang Y (2020) Improving water resistance of waterborne polyurethane coating with high transparency and good mechanical properties. Colloids Surfaces Physicochem. Eng. Asp. 601:124994. https://doi.org/10.1016/j.colsurfa.2020.124994

    Article  CAS  Google Scholar 

  149. Asare MA, Kote P, Chaudhary S, de Souza FM, Gupta RK (2022) Sunflower oil as a renewable resource for polyurethane foams: effects of flame-retardants. Polymers (Basel). https://doi.org/10.3390/polym14235282

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ji X, Wang H, Ma X, Hou C, Ma G (2017) Progress in polydimethylsiloxane-modified waterborne polyurethanes. RSC Adv 7:34086–34095. https://doi.org/10.1039/c7ra05738e

    Article  CAS  Google Scholar 

  151. Vieira IRS, de Costa LFO, de Miranda GS, Nardecchia S, de Monteiro MSSB, Ricci-Júnior E, Delpech MC (2020) Waterborne poly(urethane-urea)s nanocomposites reinforced with clay, reduced graphene oxide and respective hybrids: synthesis, stability and structural characterization. J Polym Environ 28:74–90. https://doi.org/10.1007/s10924-019-01584-y

    Article  CAS  Google Scholar 

  152. Ahmadi Y, Ahmad S (2020) Recent progress in the synthesis and property enhancement of waterborne polyurethane nanocomposites: promising and versatile macromolecules for advanced applications. Polym Rev 60:226–266. https://doi.org/10.1080/15583724.2019.1673403

    Article  CAS  Google Scholar 

  153. Wang Z, Zhang X, Yao W, Dong Y, Zhang B, Dong X, Fang H, Zhang G, Ding Y (2022) Dynamically cross-linked waterborne polyurethanes: transalkylation exchange of C-N bonds toward high performance and reprocessable thermosets. ACS Appl Polym Mater 4:5920–5926. https://doi.org/10.1021/acsapm.2c00794

    Article  CAS  Google Scholar 

  154. Zhu J, Wu Z, **ong D, Pan L, Liu Y (2019) Preparation and properties of a novel low crystallinity cross-linked network waterborne polyurethane for water-based ink. Prog Org Coatings 133:161–168. https://doi.org/10.1016/j.porgcoat.2019.04.033

    Article  CAS  Google Scholar 

  155. Li Q, He H, Wang S, Shen Y, Zhang C, Liang X (2022) Bis (2-hydroxyethyl ) terephthalate from depolymerized waste polyester modified graphene as a novel functional crosslinker for electrical and thermal conductive polyurethane composites. Compos Commun 35:101343. https://doi.org/10.1016/j.coco.2022.101343

    Article  Google Scholar 

  156. Fernandes IPM (2008) Dispersões Aquosas de Poliuretano e Poliuretano-ureia. Concepção do Produto e Metodologias de Caracterização, Instituto Politecnico de Bragança, 2008. https://www.proquest.com/openview/2fccb37c6b1e3aee0c9410c88d519f4a/1?pq-origsite=gscholar&cbl=2026366&diss=y.

Download references

Acknowledgements

The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES) for the scholarship awarded to Elaine Meirelles Senra, the National Scientific Research Council (CNPq) and the Research Support Foundation of Rio de Janeiro state (FAPERJ). The authors are also grateful for the invaluable contribution of Milton Briguet Bastos (in memoriam).

Funding

This study was conducted with a study grant provided by the Coordination for the Improvement of Higher Education Personnel (CAPES) to the doctoral student Elaine Meireles Senra.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design.

Corresponding author

Correspondence to Elen B. A. V. Pacheco.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senra, E.M., Silva, A.L.N. & Pacheco, E.B.A.V. A Review of Waterborne Polyurethane Coatings and Adhesives with Polyester Polyol from Poly(Ethylene Terephthalate) Waste. J Polym Environ 31, 3719–3739 (2023). https://doi.org/10.1007/s10924-023-02836-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02836-8

Keywords

Navigation