Log in

Bioadsorbent Derived from Schinus molle for Effective Retention of Aqueous Methylene Blue

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This research concerns the study of the adsorption of methylene blue, used to stain living tissues and in several fields, on purified celluloses (CMFs) extracted from Schinus molle. The morphological and physico-chemical properties of the raw material and the extracted cellulose were determined. Adsorption experiments were performed to analyze initial dye concentration, adsorbent dosage, pH and contact time effects. The experiments showed that adsorption at pH 6–10 was appropriate and the equilibrium was established after 60 min. The adsorption was perfectly adjustable to the pseudo-second-order and fit well with Langmuir’s mathematical models with maximum adsorption capacity of 125 mg g− 1. Moreover, it seems that Dubinin Radushkevich model gives a good fit with experimental data with adsorption energy of 5.49 kJ mol− 1, indicating a physical sorption process of methylene blue onto obtained cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

References

  1. Aksakal O, Ucun H (2010) Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (reactive Red 195) onto Pinus sylvestris L. J Hazard Mater 181:666–672

    Article  CAS  PubMed  Google Scholar 

  2. Soliman M, Elkelish A, Souad T, Alhaithloul H, Farooq M (2020) Brassinosteroid seed priming with nitrogen supplementation improves salt tolerance in soybean. Physiol Mol Biol Plants 26:501–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abdel-Azeem A, Nada AA, O’Donovan A, Thakur VK, Elkelish A (2020) Mycogenic silver nanoparticles from endophytic Trichoderma atroviride with antimicrobial activity. J Renew Mater 8:171–185

    Article  Google Scholar 

  4. Salem SS, EL-Belely EF, Niedbała G, Alnoman MM, Hassan SED, Eid AM, Shaheen TI, Elkelish A, Fouda A (2020) BactericidalandIn-vitro cytotoxic ecacy of silvernanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for thetextile fabrics. Nanomaterials 10:2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carrillo-Varela I, Mendonca RT, Pereira M, Reyes-Contreras P, Contreras D (2022) Methylene blue adsorption onto hydrogels made from different Eucalyptus dissolving pulps. Cellulose 29:445–468

    Article  CAS  Google Scholar 

  6. Liang L, Zhang S, Goenaga GA, Meng X, Zawodzinski TA, Ragauskas AJ (2020) Chemically cross-linked cellulose nanocrystal aerogels for effective removal of cation dye. Front Chem 8:570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. You X, Wang R, Zhu Y, Sui W, Cheng D (2021) Comparison of adsorption properties of a cellulose-rich modified rice husk for the removal of methylene blue and aluminum (III) from their aqueous solution. Ind Crops Prod 170:113687

    Article  CAS  Google Scholar 

  8. Katheresan V, Kansedo J, Lau SY (2018) Efficiency of various recent wastewater dye removal methods: a review. J Environ Chem Eng 6:4676–4697

    Article  CAS  Google Scholar 

  9. Rovira J, Domingo JL (2019) Human health risks due to exposure to inorganic and organic chemicals from textiles: a review. Environ Res 168:62–69

    Article  CAS  PubMed  Google Scholar 

  10. Ghanbarian M, Nabizadeh R, Nasseri S, Shemirani F, Mahvi AH, Beyki MH, Mesdaghinia A (2017) Potential of amino-riched nano-structured MnFe2O4@ cellulose for biosorption of toxic cr (VI): modeling, kinetic, equilibrium and comparing studies. Int J Biol Macromol 104:465–480

    Article  CAS  PubMed  Google Scholar 

  11. Zhu N, Yan T, Qiao J, Cao H (2016) Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: adsorption mechanism and depleted adsorbent utilization. Chemosphere 164:32–40

    Article  CAS  PubMed  Google Scholar 

  12. Li K, Li P, Cai J, **ao S, Yang H, Li A (2016) Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent. Chemosphere 154:310–318

    Article  CAS  PubMed  Google Scholar 

  13. Ben Mosbah M, Mechi L, Khiari R, Moussaoui Y (2020) Current state of porous carbon for wastewater treatment. Processes 8:1651

    Article  Google Scholar 

  14. Geca M, Wisniewska M, Nowicki P (2022) Biochars and activated carbons as adsorbents of inorganic and organic compounds from multicomponent systems—a review. Adv Colloid Interfaces Sci 305:102687

    Article  CAS  Google Scholar 

  15. Lewoyehu M (2021) Comprehensive review on synthesis and application of activated carbon from agricultural residues for the remediation of venomous pollutants in wastewater. J Anal Appl Pyrolysis 159:105279

    Article  CAS  Google Scholar 

  16. Mamani A, Ramírez N, Deiana C, Giménez M, Sardella F (2019) Highly microporous sorbents from lignocellulosic biomass: different activation routes and their application to dyes adsorption. J Environ Chem Eng 7:103148

    Article  CAS  Google Scholar 

  17. Dhahri R, Guizani M, Yilmaz M, Mechi L, Alsukaibi AKD, Alimi F, Ben Salem R, Moussaoui Y (2022) Experimental design analysis of murexide dye removal by carbon produced from waste biomass material. J Chem 2022:9735071

    Article  Google Scholar 

  18. Elhleli H, Mannai F, Ben Mosbah M, Khiari R, Moussaoui Y (2020) Biocarbon derived from Opuntia ficus indica for p-nitrophenol retention. Processes 8:10

    Article  Google Scholar 

  19. Jiang Z, Ho S-H, Wang X, Li Y, Wang C (2021) Application of biodegradable cellulose-based biomass materials in wastewater treatment. Environ Poll 290:118087

    Article  CAS  Google Scholar 

  20. Gayathiri M, Pulingam T, Lee KT, Sudesh K (2022) Activated carbon from biomass waste precursors: factors affecting production and adsorption mechanism. Chemosphere 294:133764

    Article  CAS  PubMed  Google Scholar 

  21. Zugenmaier P (2021) Order in cellulosics: historical review of crystal structure research on cellulose. Carbohydr Polym 254:117417

    Article  Google Scholar 

  22. Waliszewska B, Mleczek M, Zborowska M, Golinski P, Rutkowski P, Szentner K (2019) Changes in the chemical composition and the structure of cellulose and lignin in elm wood exposed to various forms of arsenic. Cellulose 26:6303–6315

    Article  CAS  Google Scholar 

  23. Cichosz S, Masek A (2019) Cellulose structure and property changes indicated via wetting-drying cycles. Polym Degrad Stab 167:33–43

    Article  CAS  Google Scholar 

  24. Seddiqi H, Oliaei E, Honarkar H, ** J, Geonzon LC, Bacabac RG, Klein-Nulend J (2021) Cellulose and its derivatives: towards biomedical applications. Cellulose 28:1893–1931

    Article  CAS  Google Scholar 

  25. Kim PJ, Kim K, Pol VG (2019) A comparative study of cellulose derived structured carbons on the electrochemical behavior of lithium metal-based batteries. Energy Storage Mater 19:179–185

    Article  Google Scholar 

  26. De France KJ, Chan KJ, Cranston ED, Hoare T (2016) Enhanced mechanical properties in cellulose nanocrystal–poly (oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules 17:649–660

    Article  PubMed  Google Scholar 

  27. Hamidon TS, Adnan R, Haafiz MKM, Hussin MH (2022) Cellulose-based beads for the adsorptive removal of wastewater effluents: a review. Environ Chem Lett 20:1965–2017

    Article  CAS  Google Scholar 

  28. M’barek I, Slimi H, AlSukaibi AK, Alimi F, Lajimi RH, Mechi L, ben Salem R, Moussaoui Y, (2022) Cellulose from Tamarix aphylla ’s stem via acetocell for cadmium adsorption. Arab J Chem 15:103679

    Article  CAS  Google Scholar 

  29. Tu K, Ding Y, Keplinger T (2022) Review on design strategies and applications of metal-organic framework-cellulose composites. Carbohydr Polym 291:119539

    Article  CAS  PubMed  Google Scholar 

  30. Janmohammadi M, Nazemi Z, Salehi AOM, Seyfoori A, John JV, Nourbakhsh MS, Akbari M (2023) Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater 20:137–163

    Article  CAS  PubMed  Google Scholar 

  31. Peng Z, Lin Q, Tai Y-AA, Wang YH (2020) Applications of cellulose nanomaterials in stimuli-responsive optics. J Agric Food Chem 68:12940–12955

    Article  CAS  PubMed  Google Scholar 

  32. Arca HC, Mosquera-Giraldo LI, Bi V, Xu D, Taylor LS, Edgar KJ (2018) Pharmaceutical applications of cellulose ethers and cellulose ether esters. Biomacromolecules 19:2351–2376

    Article  CAS  PubMed  Google Scholar 

  33. Razzak A, Mannai F, Khiari R, Moussaoui Y, Belgacem MN (2022) Cellulose fibre from Schinus molle and its characterization. J Renew Mater 10:2593–2606

    Article  CAS  Google Scholar 

  34. Khadhri N, Saad MK, ben Mosbah M, Moussaoui Y (2019) Batch and continuous column adsorption of indigo carmine onto activated carbon derived from date palm petiole. J Environ Chem Eng 7:102775

    Article  CAS  Google Scholar 

  35. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  36. Ho YS, McKay G (1999) Pseudo-second-order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  37. Lagergren S (1898) Zurtheorie der sogenannten adsorption geloesterstoffe. Kungliga Sven Vetensk H 24:1–39

    Google Scholar 

  38. Saad MK, Khiari R, Elaloui E, Moussaoui Y (2014) Adsorption of anthracene using activated carbon and Posidonia oceanica. Arab J Chem 7:109–113

    Article  Google Scholar 

  39. Langmuir I (1918) The adsorption of gases on plan surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  40. Freundlich H (1907) Uber die adsorption in losungen. Z Phys Chem 57:385–470

    Article  CAS  Google Scholar 

  41. Temkin MJ, Pyzhev V (1940) Recent modifications to Langmuir isotherms. Acta Physiochim URSS 12:217–225

    Google Scholar 

  42. Dubinin MM, Radushkevich LV (1947) The equation of the characteristic curve of activated charcoal. Proc Acad Sci Phys Chem 55:331–333

    Google Scholar 

  43. Penjumras P, Rahman RBA, Talib RA, Abdan K (2014) Extraction and characterization of cellulose from Durian Rind. Agric Agric Sci Procedia 2:237–243

    Google Scholar 

  44. Elhleli H, Mannai F, Khiari R, Moussaoui Y (2021) The use of mucilage extracted from Opuntia ficus indica as a microencapsulating shell. J Serb Chem Soc 86:25–38

    Article  CAS  Google Scholar 

  45. Yue Y, Han J, Han G, Aita GM, Wu Q (2015) Cellulose fibers isolated from energy cane begasse from alkaline and sodium chlorite treatments: structural, chemical and thermal properties. Ind Crops Prod 76:355–363

    Article  CAS  Google Scholar 

  46. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  PubMed  Google Scholar 

  47. El Achaby M, Fayoud N, Figueroa-Espinoza MC, Ben Youcef H, Aboulmas A (2018) New highly hydrated cellulose microfibrils with a tendril helical morphology extracted from agro-waste material: application to removal of dyes from waste water. RSC Adv 8:5212–5224

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kasiri N, Fathi M (2018) Production of cellulose nanocrystals from pistachio shells and their application for stabilizing Pickering emulsions. Int J Biol Macromol 106:1023–1031

    Article  CAS  PubMed  Google Scholar 

  49. Kouadri I, Satha H (2018) Extraction and characterization of cellulose and cellulose nanofibers from Citrullus colocynthis seeds. Ind Crops Prod 124:787–796

    Article  CAS  Google Scholar 

  50. Yang Y, Yang J, Cao J, Wang Z (2018) Pretreatment with concurrent UV photocatalysis and alkaline H2O2 enhanced the enzymatic hydrolysis of sisal waste. Bioresour Technol 267:517–523

    Article  CAS  PubMed  Google Scholar 

  51. Li L, Zhuang J, Zou H, Pang J, Yu S (2020) Partition usage of cellulose by coupling approach of supercritical carbon dioxide and cellulase to reducing sugar and nanocellulose. Carbohydr Polym 885:115533

    Article  Google Scholar 

  52. Dahlem MA, Borsoi C, Hansen B, Catto AL (2019) Evaluation of different methods for extraction of nanocellulose from Yerba mate residues. Carbohydr Polym 218:78–86

    Article  CAS  PubMed  Google Scholar 

  53. Melikoğlu AY, Bilek SE, Cesur S (2019) Optimum alkaline treatmentparameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace. Carbohydr Polym 215:330–337

    Article  PubMed  Google Scholar 

  54. Mannai F, Ammar M, Yanez JG, Elaloui E, Moussaoui Y (2018) Alkaline delignification of Cactus fibres for pulp and papermaking applications. J Polym Environ 26:798–806

    Article  CAS  Google Scholar 

  55. Tan CHC, Sabar S, Hussin MH (2018) Development of immobilized microcrystalline cellulose as an effective adsorbent for methylene blue dye removal. S Afr J Chem Eng 26:11–24

    Google Scholar 

  56. M’barek I, Isik Z, Ozay Y, Özdemir S, Tollu G, Moussaoui Y, Dizge N (2022) Nanocellulose synthesis from Tamarix aphylla and preparation of hybrid nanocellulose composites membranes with investigation of antioxidant and antibacterial effects. Sep Purif Technol 292:120815

    Article  CAS  Google Scholar 

  57. Kim M, Choong CE, Hyun S, Park CM, Lee G (2020) Mechanism of simultaneous removal of aluminum and fluoride from aqueous solution by La/Mg/Si-activated carbon. Chemosphere 253:126580

    Article  CAS  PubMed  Google Scholar 

  58. Wang Y, Zhang C, Zhao L, Meng G, Wu J, Liu Z (2017) Cellulose-based porous adsorbents with high capacity for methylene blue adsorption from aqueous solutions. Fibers Polym 18:891–899

    Article  CAS  Google Scholar 

  59. Ben Douissa N, Bergaoui L, Mansouri S, Khiari R, Mhenni MF (2013) Macroscopic and microscopic studies of methylene blue sorption onto extracted celluloses from Posidonia oceanic. Ind Crops Prod 45:106–113

    Article  CAS  Google Scholar 

  60. Ding Y, Song C, Gong W, Liu L, Wu M, Li L, Yao J (2021) Robust, sustainable, hierarchical multi-porous cellulose beads via pre-crosslinking strategy for efficient dye adsorption. Cellulose 28:7227–7241

    Article  CAS  Google Scholar 

  61. Liu L, Gao ZY, Su XP, Chen X, Jiang L, Yao JM (2015) Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustain Chem Eng 3:432–442

    Article  CAS  Google Scholar 

  62. Zhou Y, Zhang M, Wang X, Huang Q, Min Y, Ma T, Niu J (2014) Removal of crystal violet by a novel cellulose-based adsorbent: comparison with native cellulose. Ind Eng Chem Res 53:5498–5506

    Article  CAS  Google Scholar 

  63. Sebeia N, Jabli M, Ghith A, El Ghoul Y, Alminderej FM (2019) Populus tremula, Nerium oleander and Pergularia tomentosa seed fibers as sources of cellulose and lignin for the bio-sorption of methylene blue. Int J Biol Macromol 121:655–665

    Article  CAS  PubMed  Google Scholar 

  64. Chen Y, Long Y, Li Q, Chen X, Xu X (2019) Synthesis of high-performance sodium carboxymethyl cellulose-based adsorbent for effective removal of methylene blue and pb(II). Int J Biol Macromol 126:107–117

    Article  CAS  PubMed  Google Scholar 

  65. Lin F, You Y, Yang X, Jiang X, Lu Q, Wang T, Huang B, Lu B (2017) Microwave-assisted facile synthesis of TEMPO-oxidized cellulose beads with high adsorption capacity for organic dyes. Cellulose 24:5025–5040

    Article  CAS  Google Scholar 

  66. Li C, Chen D, Ding J, Shi Z (2020) A novel hetero-exopolysaccharide for the adsorption of methylene blue from aqueous solutions: isotherm, kinetic, and mechanism studies. J Clean Prod 265:121800

    Article  CAS  Google Scholar 

  67. Faghihian H, Iravani M, Moayed M, Ghannadi-Maragheh M (2013) Preparation of a novel PAN–zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solutions: kinetic, equilibrium, and thermodynamic studies. Chem Eng J 222:41–48

    Article  CAS  Google Scholar 

  68. Araissi M, Elaloui E, Moussaoui Y (2020) The removal of cadmium, cobalt, and nickel by adsorption with Na-Y zeolite. Iran J Chem Chem Eng 39:169–179

    CAS  Google Scholar 

  69. Hadid M, Noukrati H, Youcef HB, Barroug A, Sehaqui H (2021) Phosphorylated cellulose for water purification: a promising material with outstanding adsorption capacity towards methylene blue. Cellulose 28:7893–7908

    Article  CAS  Google Scholar 

  70. Kankılıc GB, Metin AU (2020) Phragmites australis as a new cellulose source: extraction, characterization and adsorption of methylene blue. J Mol Liq 312:113313

    Article  Google Scholar 

  71. Pei Y, Wu X, Xu G, Sun Z, Zheng X, Liu J, Tang K (2017) Tannin-immobilized cellulose microspheres as effective adsorbents for removing cationic dye (Methylene Blue) from aqueous solution. J Chem Technol Biotechnol 92:1276–1284

    Article  CAS  Google Scholar 

  72. Shi H, Li W, Zhong L, Xu C (2014) Methylene blue adsorption from aqueous solution by magnetic cellulose/grapheme oxide composite: equilibrium, kinetics, and thermodynamics. Ind Eng Chem Res 53:1108–1118

    Article  CAS  Google Scholar 

  73. Li C, Ma H, Venkateswaran S, Hsiao BS (2020) Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes/heavy metals ions. Chem Eng Sci 389:123458

    Article  CAS  Google Scholar 

  74. Sebeia N, Jabli M, Ghith A, Elghoul Y, Alminderej FM (2019) Production of cellulose from Aegagropila Linnaei macro-algae: chemical modification, characterization and application for the bio-sorption of cationic and anionic dyes from water. Int J Biol Macromol 135:152–162

    Article  CAS  PubMed  Google Scholar 

  75. Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665

    Article  CAS  Google Scholar 

  76. Kaur K, **dal R (2019) Self-assembled GO incorporated CMC and chitosan-based nanocomposites in the removal of cationic dyes. Carbohydr Polym 225:115245

    Article  CAS  PubMed  Google Scholar 

  77. Chan CH, Chia CH, Zakaria S, Sajab MS, Chin SX (2015) Cellulose nanofibrils: a rapid adsorbent for the removal of methylene blue. RSC Adv 5:18204–18212

    Article  CAS  Google Scholar 

  78. Dai H, Zhang Y, Ma L, Zhang H, Huang H (2019) Synthesis and response of pineapple peel carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/graphene oxide hydrogels. Carbohydr Polym 215:366–376

    Article  CAS  PubMed  Google Scholar 

  79. Yang X, Liu H, Han F, Jiang S, Liu L, **a Z (2017) Fabrication of cellulose nanocrystal from Carex meyeriana Kunth and its application in the adsorption of methylene blue. Carbohydr Polym 175:464–472

    Article  CAS  PubMed  Google Scholar 

  80. Li Y, **ao H, Pan Y, Wang L (2018) Novel composite adsorbent consisting of dissolved cellulose fiber/microfibrillated cellulose for dye removal from aqueous solution. ACS Sustain Chem Eng 6:6994–7002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been funded by Scientific Research Deanship at University of Hail-Saudi Arabia through project number RG-21 070.

Funding

This work was supported by Scientific Research Deanship at University of Hail-Saudi Arabia through Project Number RG-21 070.

Author information

Authors and Affiliations

Authors

Contributions

Ideation and design of the experiment were done by AR, RK and YM. Development and optimization of experimental methods were done by AR, MY and RK. Collection and interpretation of experimental data was done by AR, RK, LM and YM. Preparing and writing of the manuscript were done by AR, FH, FA, LM and YM.

Corresponding author

Correspondence to Younes Moussaoui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razzak, A., Yılmaz, M., Khiari, R. et al. Bioadsorbent Derived from Schinus molle for Effective Retention of Aqueous Methylene Blue. J Polym Environ 31, 1787–1799 (2023). https://doi.org/10.1007/s10924-022-02698-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02698-6

Keywords

Navigation