Log in

The Effect of Different Acrylic-Based Rubbers on the Crystallization Behavior of PLA/PDLA Stereocomplex

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study investigated the performance of two acrylic rubbers on the improvement of mechanical and thermal properties of polylactic acid (PLA)/ poly(D-lactide) (PDLA) stereocomplex. The selected acrylic-based rubbers consisted of a commercial acrylic rubber (ACM) and acrylic core–shell rubber (CSR). In this work, 5 wt% PDLA was melt-blended with PLA to form PLA/PDLA stereocomplex (ST) in the presence of a 15 wt% acrylic-based rubber in an internal mixer at 180 °C and 50 rpm. It was found that the small amount of PDLA could successfully form stereocomplex crystals with PLA during melt mixing. The addition of acrylic-based rubbers not only increased the impact strength of the blends but also assisted PLA in forming more perfect crystals. This is because the rubbers could act as nucleation sites for PLA crystallization leading to smaller spherulite size than that of neat unmodified PLA. Comparatively, CSR could provide much higher %crystallinity with quicker nucleation onset than ACM in both PLA and ST systems, even though the crystallization rate was lower. In terms of mechanical properties, CSR also contributed to the highest impact strength due to the smaller size of CSR than ACM in both PLA and ST systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The raw/processed data are available upon request.

References

  1. Beatrice MC, Bronco S, Chinea C (2010) The effect of free radical reactions on structure and properties of poly(lactic acid) (PLA) based blends. Polym Degrad Stab 95:332–341

    Article  Google Scholar 

  2. Bitinis N, Verdejo R, Cassagnanau P, Lopez-Manchado M (2011) Structure and properties of polylactide/natural rubber. Mater Chem Phys 129:823–831

    Article  CAS  Google Scholar 

  3. Gerard T, Budtova T (2012) Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. Eur Polym J 48:1110–1117

    Article  CAS  Google Scholar 

  4. Huneault M, Li H (2007) Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 48:270–280

    Article  CAS  Google Scholar 

  5. Ikada Y, Jamshidi K, Hyon S, Tsuji H (1987) Stereocomplex formation between enatiomeric poly (lactide). Macromolecules 20(4):904–905

    Article  CAS  Google Scholar 

  6. Chen X, Kalish J, Hsu S (2011) Structure evolution of alpha phase poly(lactic acid). J Polym Sci 49:1446–1454

    Article  CAS  Google Scholar 

  7. Qi F, Tang M, Chen X, Chen M, Guo G, Zhang Z (2015) Morphological structure, thermal and mechanical properties of tough poly(lactic acid) upon stereocomplexes. Eur. Polym. J 71:314–324

    Article  CAS  Google Scholar 

  8. Lee H, Kim E, Kim J (2013) Effect of stereocomplex crystallite as a nucleating agent on the isothermal crystallization behavior of poly(L-lactic acid). Plast Eng 69:44–48

    Article  Google Scholar 

  9. Kulinski Z, Piorkowska E (2005) Crystallization, structure and properties of plasticized poly(L-lactide). Polymer 46:10290–10300

    Article  CAS  Google Scholar 

  10. Kulinski Z, Piorkowska E, Galeski A, Masirek R (2006) Plasticization of semicrystalline poly(L-lactide) with poly(propylene glycol). Polymer 47:7178–7188

    Article  Google Scholar 

  11. Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219

    Article  CAS  Google Scholar 

  12. Ljungberg N, Wessle´n B (2003) Tributyl citrate oligomers as plasticizers for poly (lactic acid):thermo-mechanical film properties and aging. Polymer 44:7679–7688

    Article  CAS  Google Scholar 

  13. Fatima H, Jean- M, Frédéric A, Philippe D, Valérie T, David R (2011) New approach on the development of plasticized polylactide (PLA) Grafting of poly(ethylene glycol) (PEG) via reactive extrusion. Eur Polym J 47:2134–2144

    Article  Google Scholar 

  14. Lemmouchi Y, Murariu M, Santos AMD, Amass AJ, Schacht E, Dubois P (2009) Plasticization of poly(lactide) with blends of tributyl citrate and low molecular weight poly(d, l-lactide)-bpoly( ethylene glycol) copolymers. Eur Polym J 45(10):2839–2848

    Article  CAS  Google Scholar 

  15. Anderson KS, Hillmyer MA (2004) The influence of block copolymer microstructure on the toughness of compatibilized polylactide/polyethylene blends. Polymer 45(26):8809–8823

    Article  CAS  Google Scholar 

  16. Anderson KS, Lim SH, Hillmyer MA (2003) Toughening of polylactide by melt blending with linear low-density polyethylene. J Appl Polym Sci 89(14):3757–3768

    Article  CAS  Google Scholar 

  17. Ishida S, Nagasaki R, Chino K, Dong T, Inoue Y (2009) Toughening of poly(L-lactide) by melt blending with rubbers. J Appl Polym Sci 113(1):558–566

    Article  CAS  Google Scholar 

  18. Rui-lei Y, Zhang L-S, Feng Y-H, Zhang R-Y, Zhu J (2014) Improvement in Toughness of Polylactide by Melt Blending with Bio-based. Chin J Polym Sci 32(8):1099–1110

    Article  Google Scholar 

  19. Sachiko I, Reiko N, Keisuke C, Tungalag D, Yoshio I (2009) Toughening of Poly(L-lactide) by Melt Blending. J Appl Polym Sci 113:558–566

    Article  Google Scholar 

  20. Desa MM, Hassan A, Arsad A, Mohammad N (2015) Mechanical and Thermal Properties of Rubber Toughened Poly(lactic acid). Adv Mater Res 1125:222–226

    Article  Google Scholar 

  21. Jiang J, Lili Su, Zhang K, Guozhang Wu (2013) Rubber-toughened PLA blends with low thermal expansion. J Appl Polym Sci 128:3993–4000

    Article  CAS  Google Scholar 

  22. Petchwattana N, Covavisaruch S, Euapanthasate N (2012) Utilization of ultrafine acrylate rubber particles as a toughening agent for poly(lactic acid). Mater Sci Eng A 532:64–70

    Article  CAS  Google Scholar 

  23. Ge XG, George S, Law S, Sain M (2011) Mechanical properties and morphology of polylactide composited with acrylic impact modifier. J Macromol Sci 50(11):2070–2083

    Article  CAS  Google Scholar 

  24. Li T, Turng L-S, Gong S, Erlacher K (2006) Polylactide, nanoclay, and core–shell rubber composites. Polym Eng Sci 46(10):1419–1427

    Article  CAS  Google Scholar 

  25. Petchwattana N, Covavisaruch S (2014) Mechanical and morphological properties of wood plastic biocomposites prepared from toughened poly(lactic acid) and rubber wood sawdust (Hevea brasiliensis). Bionic Eng 11(4):630–637

    Article  Google Scholar 

  26. Sang Z-H, Chen Y, Li Y, Xu L, Lei J, Yan Z, Zhong G-J, Li Z-M (2018) Simultaneously improving stiffness, toughness, and heat deflection resistance of polylactide using the strategy of orientation crystallization amplified by interfacial interactions. Polym Cryst 1:1–12

    Google Scholar 

  27. Phattarateera S, Pattamaprom C (2019) The effect of polylactic acid (PLA)/poly d lactide stereocomplex on the thermal and mechanical properties of various PLA/rubber blends. Polym Int 69(1):41–49

    Article  Google Scholar 

  28. Wei X-F, Bao R-Y, Cao Z-Q, Yang W, **e B-H, Yang M-B (2014) Stereocomplex crystallite network in asymmetric PLLA/PDLA blends: Formation, structure, and confining effect on the crystallization rate of homocrystallites. Macromolecules 47:1439–1448

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Department of Chemical Engineering, Thammasat University, Thailand and National Metal and Materials Technology Center (MTEC), Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cattaleeya Pattamaprom.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phattarateera, S., Pattamaprom, C. The Effect of Different Acrylic-Based Rubbers on the Crystallization Behavior of PLA/PDLA Stereocomplex. J Polym Environ 28, 1592–1600 (2020). https://doi.org/10.1007/s10924-020-01707-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01707-w

Keywords

Navigation