Log in

An Improved Ultrasonic Imaging Method for Austenitic Welds Based on Grain Orientation Distribution Inversion Algorithm

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Traditional ultrasonic imaging inspection does not perform well for austenitic welds, in which the defect locating accuracy is insufficient due to the distortion of propagation paths caused by the weld’s anisotropy and inhomogeneity. The distribution of grain orientation (DGO) contributes to the velocity distribution in austenitic welds and influences the ultrasonic propagation paths. An improved ultrasonic imaging method for austenitic welds based on a DGO inversion algorithm is proposed in this paper. A DGO model is established using an iterative disturbance method of local parameters. The model is optimized by an evolution strategy based on the model error evaluated by propagation times of known reflectors. Inspection experiments were carried out, in which a reference specimen was used to acquire the DGO inversion result and the inspection images of a target specimen were generated based on the optimized DGO model. Experimental results have proved that the improved ultrasonic imaging method can obviously increase the defect locating accuracy and effectively improve the imaging performance for austenitic welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kolkoori, S., Rahman, M.U., Prager, J.: Effect of columnar grain orientation on ultrasonic plane wave energy reflection and transmission behaviour in anisotropic austenitic weld materials. J. Nondestruct. Eval. 31(3), 253–269 (2012)

    Article  Google Scholar 

  2. Chassignole, B., El Guerjouma, R., Ploix, M.A., Fouquet, T.: Ultrasonic and structural characterization of anisotropic austenitic stainless steel welds: towards a higher reliability in ultrasonic non-destructive testing. NDTE Int. 43(4), 273–282 (2010)

    Article  Google Scholar 

  3. Li, C., Pain, D., Wilcox, P.D., Drinkwater, B.W.: Imaging composite material using ultrasonic arrays. NDTE Int. 53, 8–17 (2013)

    Article  Google Scholar 

  4. Holmes, C., Drinkwater, B.W., Wilcox, P.D.: Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation. NDTE Int. 38(8), 701–711 (2005)

    Article  Google Scholar 

  5. Cohen, L.: Time-frequency distributions: a review. Proc. IEEE 77(7), 941–981 (1989)

    Article  Google Scholar 

  6. Zhou, H., Han, Z., Du, D., Chen, Y.: Ultrasonic signal extraction algorithm based on a Gaussian modulated pulse model. J. Tsinghua Univ. 59(02), 96–102 (2019). [in Chinese]

    Google Scholar 

  7. Mann, S., Haykin, S.: The chirplet transform: physical considerations. IEEE Trans. Signal Proces. 43(11), 2745–2761 (1995)

    Article  Google Scholar 

  8. Ogilvy, J.A.: Computerized ultrasonic ray tracing in austenitic steel. NDT Int. 18(2), 67–77 (1985)

    Article  Google Scholar 

  9. Ogilvy, J.A.: Ultrasonic beam profiles and beam propagation in an austenitic weld using a theoretical ray tracing model. Ultrasonics 24, 337–347 (1986)

    Article  Google Scholar 

  10. Nowers, O., Duxbury, D.J., Drinkwater, B.W.: Ultrasonic array imaging through an anisotropic austenitic steel weld using an efficient ray-tracing algorithm. NDTE Int. 79, 98–108 (2016)

    Article  Google Scholar 

  11. Nowers, O., Duxbury, D.J., Zhang, J., Drinkwater, B.W.: Novel ray-tracing algorithms in NDE: application of Dijkstra and A* algorithms to the inspection of an anisotropic weld. NDTE Int. 61, 58–66 (2014)

    Article  Google Scholar 

  12. Zhou, H., Han, Z., Du, D., Chen, Y.: A combined marching and minimizing ray-tracing algorithm developed for ultrasonic array imaging of austenitic welds. NDTE Int. 95, 45–56 (2018)

    Article  Google Scholar 

  13. Zaefferer, S., Elhami, N.N., Konijnenberg, P.: Electron backscatter diffraction (EBSD) techniques for studying phase transformations in steels. In: Pereloma, E., Edmonds, D.V. (eds.) Phase Transformations in Steels, pp. 557–587. New York, Woodhead Publishing (2012)

    Chapter  Google Scholar 

  14. Nageswaran, C., Carpentier, C., Tse, Y.Y.: Microstructural quantification, modelling and array ultrasonics to improve the inspection of austenitic welds. Insight 51(12), 660–666 (2009)

    Article  Google Scholar 

  15. Moysan, J., Apfel, A., Corneloup, G., Chassignole, B.: Modelling the grain orientation of austenitic stainless steel multipass welds to improve ultrasonic assessment of structural integrity. Int. J. Pres. Ves. Pip. 80(2), 77–85 (2003)

    Article  Google Scholar 

  16. Apfel, A., Moysan, J., Corneloup, G., Fouquet, T., Chassignole, B.: Coupling an ultrasonic propagation code with a model of the heterogeneity of multipass welds to simulate ultrasonic testing. Ultrasonics 43(6), 447–456 (2005)

    Article  Google Scholar 

  17. Zhang, J., Hunter, A., Drinkwater, B.W., Wilcox, P.D.: Monte Carlo inversion of ultrasonic array data to map anisotropic weld properties. IEEE Trans. Ultrason. Ferr. 59(11), 2487–2497 (2012)

    Article  Google Scholar 

  18. Balasubramaniam, K., Rao, N.S.: Inversion of composite material elastic constants from ultrasonic bulk wave phase velocity data using genetic algorithms. Composites B 29(2), 171–180 (1998)

    Article  Google Scholar 

  19. Gueudre, C., Le Marrec, L.C., Moysan, J., Chassignole, B.: Direct model optimisation for data inversion. Application to ultrasonic characterisation of heterogeneous welds. NDTE Int. 42(1), 47–55 (2009)

    Article  Google Scholar 

  20. Fan, Z., Lowe, M.J.S.: Investigation of ultrasonic array measurements to refine weld maps of austenitic steel welds. AIP Conf. Proc. 1430, 873–880 (2012)

    Article  Google Scholar 

  21. Cai, Z., Wang, Y.: A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE T. Evolut. Comput. 10(6), 658–675 (2006)

    Article  Google Scholar 

  22. Connolly, G.D.: Modelling of the propagation of ultrasound through austenitic steel welds: Imperial College London, 2009. Section 2: Elastic wave propagation in bulk media.

  23. Kolkoori, S.R., Rahman, M.U., Chinta, P.K., Ktreutzbruck, M., Rethmeier, M., Prager, J.: Ultrasonic field profile evaluation in acoustically inhomogeneous anisotropic materials using 2D ray tracing model: numerical and experimental comparison. Ultrasonics 53(2), 396–411 (2013)

    Article  Google Scholar 

  24. Ogilvy, J.A.: An iterative ray tracing model for ultrasonic nondestructive testing. NDTE Int. 25(1), 3–10 (1992)

    Article  Google Scholar 

  25. Bai, C., Huang, G., Li, X., Zhou, B., Greenhalgh, S.: Ray tracing of multiple transmitted/reflected/converted waves in 2-D/3-D layered anisotropic TTI media and application to crosswell traveltime tomography. Geophys. J. Int. 195(2), 1068–1087 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by National Natural Science Foundation of China (No.: 51375258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zandong Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Han, Z. & Du, D. An Improved Ultrasonic Imaging Method for Austenitic Welds Based on Grain Orientation Distribution Inversion Algorithm. J Nondestruct Eval 39, 54 (2020). https://doi.org/10.1007/s10921-020-00697-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-020-00697-y

Keywords

Navigation