Log in

Hybridizable Discontinuous Galerkin Methods for the Two-Dimensional Monge–Ampère Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce two hybridizable discontinuous Galerkin (HDG) methods for numerically solving the two-dimensional Monge–Ampère equation. The first HDG method is devised to solve the nonlinear elliptic Monge–Ampère equation by using Newton’s method. The second HDG method is devised to solve a sequence of the Poisson equation until convergence to a fixed-point solution of the Monge–Ampère equation is reached. Numerical examples are presented to demonstrate the convergence and accuracy of the HDG methods. Furthermore, the HDG methods are applied to r-adaptive mesh generation by redistributing a given scalar density function via the optimal transport theory. This r-adaptivity methodology leads to the Monge–Ampère equation with a nonlinear Neumann boundary condition arising from the optimal transport of the density function to conform the resulting high-order mesh to the boundary. Hence, we extend the HDG methods to treat the nonlinear Neumann boundary condition. Numerical experiments are presented to illustrate the generation of r-adaptive high-order meshes on planar and curved domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated in this study are available from the corresponding author on reasonable request.

References

  1. Feng, X., Glowinski, R., Neilan, M.: Recent developments in numerical methods for fully nonlinear second order partial differential equations. SIAM Rev. 55(2), 205–267 (2013). https://doi.org/10.1137/110825960

    Article  MathSciNet  Google Scholar 

  2. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991). https://doi.org/10.1002/cpa.3160440402

    Article  MathSciNet  Google Scholar 

  3. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000). https://doi.org/10.1007/s002110050002

    Article  MathSciNet  Google Scholar 

  4. Benamou, J.D., Froese, B.D., Oberman, A.M.: Two numerical methods for the elliptic Monge–Ampère equation. ESAIM Math. Modell. Numer. Anal. 44(4), 737–758 (2010). https://doi.org/10.1051/m2an/2010017

    Article  Google Scholar 

  5. Benamou, J.D., Froese, B.D., Oberman, A.M.: Numerical solution of the optimal transportation problem using the Monge–Ampère equation. J. Comput. Phys. 260, 107–126 (2014). https://doi.org/10.1016/j.jcp.2013.12.015

    Article  MathSciNet  Google Scholar 

  6. Caffarelli, L.A.: Interior \(W^2, p\) estimates for solutions of the Monge–Ampere equation. Ann. Math. 131(1), 135 (1990). https://doi.org/10.2307/1971510

    Article  MathSciNet  Google Scholar 

  7. Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge–Ampère type. Comput. Methods Appl. Mech. Eng. 195(13–16), 1344–1386 (2006). https://doi.org/10.1016/j.cma.2005.05.023

    Article  Google Scholar 

  8. Frisch, U., Matarrese, S., Mohayaee, R.: A reconstruction of the initial conditions of the universe by optimal mass transportation. Nature 417(6886), 260–262 (2002). https://doi.org/10.1038/417260a. ar**v:astro-ph/0109483

    Article  Google Scholar 

  9. Froese, B.D., Oberman, A.M.: Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation. J. Comput. Phys. 230(3), 818–834 (2011). https://doi.org/10.1016/j.jcp.2010.10.020

    Article  MathSciNet  Google Scholar 

  10. Oliker, V.: Mathematical aspects of design of beam sha** surfaces in geometrical optics. In: Trends in nonlinear analysis, pp. 193–224. Springer, Berlin (2003). https://doi.org/10.1007/978-3-662-05281-54

  11. Prins, C.R., Ten Thije Boonkkamp, J.H., Van Roosmalen, J., Ijzerman, W.L., Tukker, T.W.: A Monge–Ampère-solver for free-form reflector design. SIAM J. Sci. Comput. 36(3), B640–B660 (2014). https://doi.org/10.1137/130938876

    Article  Google Scholar 

  12. Trudinger, N.S., Wang, X.-J.: The Monge–Ampere equation and its geometric applications. Handb. Geom. Anal. I, 467–524 (2008)

    MathSciNet  Google Scholar 

  13. Awanou, G.: Standard finite elements for the numerical resolution of the elliptic Monge–Ampère equation: classical solutions. IMA J. Numer. Anal. 35(3), 1150–1166 (2015). https://doi.org/10.1093/imanum/dru028

    Article  MathSciNet  Google Scholar 

  14. Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46(3), 1212–1249 (2008). https://doi.org/10.1137/040621740

    Article  MathSciNet  Google Scholar 

  15. Brenner, S., Gudi, T., Neilan, M., Sung, L.-Y.: C0 penalty methods for the fully nonlinear Monge–Ampère equation. Math. Comput. 80(276), 1979–1995 (2011). https://doi.org/10.1090/s0025-5718-2011-02487-7

    Article  Google Scholar 

  16. Brenner, S.C., Neilan, M.: Finite element approximations of the three dimensional Monge–Ampère equation. ESAIM Math. Modell. Numer. Anal. 46(5), 979–1001 (2012). https://doi.org/10.1051/m2an/2011067

    Article  Google Scholar 

  17. Caboussat, A., Glowinski, R., Sorensen, D.C.: A least-squares method for the numerical solution of the Dirichlet problem for the elliptic Monge–Ampère equation in dimension two. ESAIM Control Optim. Calc. Var. 19(3), 780–810 (2013). https://doi.org/10.1051/cocv/2012033

    Article  MathSciNet  Google Scholar 

  18. Feng, X., Neilan, M.: Finite element approximations of general fully nonlinear second order elliptic partial differential equations based on the vanishing moment method. Comput. Math. Appl. 68(12), 2182–2204 (2014). https://doi.org/10.1016/j.camwa.2014.07.023

    Article  MathSciNet  Google Scholar 

  19. Feng, X., Neilan, M.: Mixed finite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47(2), 1226–1250 (2009). https://doi.org/10.1137/070710378. ar**v:0712.1241

    Article  MathSciNet  Google Scholar 

  20. Feng, X., Lewis, T.: Mixed interior penalty discontinuous Galerkin methods for fully nonlinear second order elliptic and parabolic equations in high dimensions. Numer. Methods Partial Differ. Equ. 30(5), 1538–1557 (2014). https://doi.org/10.1002/num.21856

    Article  MathSciNet  Google Scholar 

  21. Feng, X., Jensen, M.: Convergent semi-Lagrangian methods for the Monge–Ampère equation on unstructured grids. SIAM J. Numer. Anal. 55(2), 691–712 (2017). https://doi.org/10.1137/16M1061709

    Article  MathSciNet  Google Scholar 

  22. Feng, X., Lewis, T.: Nonstandard local discontinuous Galerkin methods for fully nonlinear second order elliptic and parabolic equations in high dimensions. J. Sci. Comput. 77(3), 1534–1565 (2018). https://doi.org/10.1007/s10915-018-0765-z. ar**v:1801.05877

    Article  MathSciNet  Google Scholar 

  23. Froese, B.D.: A numerical method for the elliptic Monge–Ampère equation with transport boundary conditions. SIAM J. Sci. Comput. 34(3), A1432–A1459 (2012). https://doi.org/10.1137/110822372. ar**v:1101.4981

    Article  Google Scholar 

  24. Liu, H., Glowinski, R., Leung, S., Qian, J.: A finite element/operator-splitting method for the numerical solution of the three dimensional Monge–Ampère equation. J. Sci. Comput. 81(3), 2271–2302 (2019). https://doi.org/10.1007/s10915-019-01080-4

    Article  MathSciNet  Google Scholar 

  25. Lakkis, O., Pryer, T.: A finite element method for nonlinear elliptic problems. SIAM J. Sci. Comput. 35(4), A2025–A2045 (2013). https://doi.org/10.1137/120887655

    Article  MathSciNet  Google Scholar 

  26. Glowinski, R., Liu, H., Leung, S., Qian, J.: A finite element/operator-splitting method for the numerical solution of the two dimensional elliptic Monge–Ampère equation. J. Sci. Comput. 79(1), 1–47 (2019). https://doi.org/10.1007/s10915-018-0839-y

    Article  MathSciNet  Google Scholar 

  27. Delzanno, G.L., Chacón, L., Finn, J.M., Chung, Y., Lapenta, G.: An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge–Kantorovich optimization. J. Comput. Phys. 227(23), 9841–9864 (2008). https://doi.org/10.1016/j.jcp.2008.07.020

    Article  MathSciNet  Google Scholar 

  28. Budd, C.J., Williams, J.F.: Moving mesh generation using the parabolic Monge–Ampère equation. SIAM J. Sci. Comput. 31(5), 3438–3465 (2009). https://doi.org/10.1137/080716773

    Article  MathSciNet  Google Scholar 

  29. Budd, C.J., Russell, R.D., Walsh, E.: The geometry of r-adaptive meshes generated using optimal transport methods. J. Comput. Phys. 282, 113–137 (2015). https://doi.org/10.1016/j.jcp.2014.11.007. ar**v:1409.5361

    Article  MathSciNet  Google Scholar 

  30. Browne, P.A., Budd, C.J., Piccolo, C., Cullen, M.: Fast three dimensional r-adaptive mesh redistribution. J. Comput. Phys. 275, 174–196 (2014). https://doi.org/10.1016/j.jcp.2014.06.009

    Article  MathSciNet  Google Scholar 

  31. Chacón, L., Delzanno, G.L., Finn, J.M.: Robust, multidimensional mesh-motion based on Monge-Kantorovich equidistribution. J. Comput. Phys. 230(1), 87–103 (2011). https://doi.org/10.1016/j.jcp.2010.09.013

    Article  MathSciNet  Google Scholar 

  32. Weller, H., Browne, P., Budd, C., Cullen, M.: Mesh adaptation on the sphere using optimal transport and the numerical solution of a Monge–Ampère type equation. J. Comput. Phys. 308, 102–123 (2016). https://doi.org/10.1016/j.jcp.2015.12.018. ar**v:1512.02935

    Article  MathSciNet  Google Scholar 

  33. McRae, A.T., Cotter, C.J., Budd, C.J.: Optimal-transport-based mesh adaptivity on the plane and sphere using finite elements. SIAM J. Sci. Comput. 40(2), A1121–A1148 (2018). https://doi.org/10.1137/16M1109515. ar**v:1612.08077

    Article  MathSciNet  Google Scholar 

  34. Sulman, M., Williams, J.F., Russell, R.D.: Optimal mass transport for higher dimensional adaptive grid generation. J. Comput. Phys. 230(9), 3302–3330 (2011). https://doi.org/10.1016/j.jcp.2011.01.025

    Article  MathSciNet  Google Scholar 

  35. Sulman, M.H., Nguyen, T.B., Haynes, R.D., Huang, W.: Domain decomposition parabolic Monge–Ampère approach for fast generation of adaptive moving meshes. Comput. Math. Appl. 84, 97–111 (2021). https://doi.org/10.1016/j.camwa.2020.12.007

    Article  MathSciNet  Google Scholar 

  36. Aparicio-Estrems, G., Gargallo-Peiró, A., Roca, X.: Combining high-order metric interpolation and geometry implicitization for curved r-adaption. CAD Comput. Aided Des. 157, 103478 (2023). https://doi.org/10.1016/j.cad.2023.103478

    Article  MathSciNet  Google Scholar 

  37. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  Google Scholar 

  38. Cockburn, B., Dong, B., Guzmán, J., Restelli, M., Sacco, R.: A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems. SIAM J. Sci. Comput. 31(5), 3827–3846 (2009)

    Article  MathSciNet  Google Scholar 

  39. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009). https://doi.org/10.1016/j.jcp.2009.01.030

    Article  MathSciNet  Google Scholar 

  40. Cockburn, B., Mustapha, K.: A hybridizable discontinuous Galerkin method for fractional diffusion problems. Numer. Math. 130(2), 293–314 (2015). https://doi.org/10.1007/s00211-014-0661-x. ar**v:1409.7383

    Article  MathSciNet  Google Scholar 

  41. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009). https://doi.org/10.1016/j.jcp.2009.08.030

    Article  MathSciNet  Google Scholar 

  42. Ueckermann, M.P., Lermusiaux, P.F.: High-order schemes for 2D unsteady biogeochemical ocean models. Ocean Dyn. 60(6), 1415–1445 (2010). https://doi.org/10.1007/s10236-010-0351-x

    Article  Google Scholar 

  43. Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47(2), 1092–1125 (2009). https://doi.org/10.1137/080726653

    Article  MathSciNet  Google Scholar 

  44. Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.J.: Analysis of an HDG method for Stokes flow. Math. Comp. 80, 723–760 (2011)

    Article  MathSciNet  Google Scholar 

  45. Cockburn, B., Nguyen, N.C., Peraire, J.: A comparison of HDG methods for Stokes flow. J. Sci. Comput. 45(1–3), 215–237 (2010). https://doi.org/10.1007/s10915-010-9359-0

    Article  MathSciNet  Google Scholar 

  46. Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199(9–12), 582–597 (2010). https://doi.org/10.1016/j.cma.2009.10.007

    Article  MathSciNet  Google Scholar 

  47. Ahnert, T., Bärwolff, G.: Numerical comparison of hybridized discontinuous Galerkin and finite volume methods for incompressible flow. Int. J. Numer. Meth. Fluids 76(5), 267–281 (2014). https://doi.org/10.1002/fld.3938

    Article  MathSciNet  Google Scholar 

  48. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011). https://doi.org/10.1016/j.jcp.2010.10.032

    Article  MathSciNet  Google Scholar 

  49. Nguyen, N. C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods. In: Proceedings of the international conference on spectral and high order methods, pp. 63–84. Springer, Berlin (2009)

  50. Nguyen, N. C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. In: Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, pp. AIAA 2010–362. Orlando, Florida (2010)

  51. Rhebergen, S., Cockburn, B.: A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains. J. Comput. Phys. 231(11), 4185–4204 (2012). https://doi.org/10.1016/j.jcp.2012.02.011

    Article  MathSciNet  Google Scholar 

  52. Rhebergen, S., Wells, G.N.: A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field. J. Sci. Comput. 76(3), 1484–1501 (2018). https://doi.org/10.1007/s10915-018-0671-4. ar**v:1704.07569

    Article  MathSciNet  Google Scholar 

  53. Ueckermann, M.P., Lermusiaux, P.F.: Hybridizable discontinuous Galerkin projection methods for Navier-Stokes and Boussinesq equations. J. Comput. Phys. 306, 390–421 (2016). https://doi.org/10.1016/j.jcp.2015.11.028

    Article  MathSciNet  Google Scholar 

  54. Ciucă, C., Fernandez, P., Christophe, A., Nguyen, N.C., Peraire, J.: Implicit hybridized discontinuous Galerkin methods for compressible magnetohydrodynamics. J. Comput. Phys. X 5, 100042 (2020). https://doi.org/10.1016/j.jcpx.2019.100042

    Article  MathSciNet  Google Scholar 

  55. Fernandez, P., Nguyen, N.C., Peraire, J.: The hybridized discontinuous Galerkin method for Implicit Large-Eddy simulation of transitional turbulent flows. J. Comput. Phys. 336, 308–329 (2017). https://doi.org/10.1016/j.jcp.2017.02.015

    Article  MathSciNet  Google Scholar 

  56. Franciolini, M., Fidkowski, K.J., Crivellini, A.: Efficient discontinuous Galerkin implementations and preconditioners for implicit unsteady compressible flow simulations. Comput. Fluids 203, 104542 (2020). https://doi.org/10.1016/j.compfluid.2020.104542. ar**v:1812.04789

    Article  MathSciNet  Google Scholar 

  57. Moro, D., Nguyeny, N. C., Peraire, J.: Navier-stokes solution using Hybridizable discontinuous Galerkin methods. In: 20th AIAA computational fluid dynamics conference 2011, American Institute of Aeronautics and Astronautics, Honolulu, Hawaii, pp. AIAA–2011–3407 (2011). https://doi.org/10.2514/6.2011-3407. http://arc.aiaa.org/doi/abs/10.2514/6.2011-3407

  58. Nguyen, N.C., Peraire, J.: Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys. 231(18), 5955–5988 (2012). https://doi.org/10.1016/j.jcp.2012.02.033

    Article  MathSciNet  Google Scholar 

  59. Nguyen, N.C., Peraire, J., Cockburn, B.: A class of embedded discontinuous Galerkin methods for computational fluid dynamics. J. Comput. Phys. 302, 674–692 (2015). https://doi.org/10.1016/j.jcp.2015.09.024

    Article  MathSciNet  Google Scholar 

  60. Vila-Pérez, J., Giacomini, M., Sevilla, R., Huerta, A.: Hybridisable discontinuous Galerkin formulation of compressible flows. Arch. Comput. Methods Eng. 28(2), 753–784 (2021). https://doi.org/10.1007/s11831-020-09508-z

    Article  MathSciNet  Google Scholar 

  61. Vila-Pérez, J., Van Heyningen, R.L., Nguyen, N.-C., Peraire, J.: Exasim: generating discontinuous Galerkin codes for numerical solutions of partial differential equations on graphics processors. SoftwareX 20, 101212 (2022). https://doi.org/10.1016/j.softx.2022.101212

    Article  Google Scholar 

  62. Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230(19), 7151–7175 (2011). https://doi.org/10.1016/j.jcp.2011.05.018

    Article  MathSciNet  Google Scholar 

  63. Sánchez, M.A., Du, S., Cockburn, B., Nguyen, N.-C., Peraire, J.: Symplectic Hamiltonian finite element methods for electromagnetics. Comput. Methods Appl. Mech. Eng. 396, 114969 (2022). https://doi.org/10.1016/j.cma.2022.114969

    Article  MathSciNet  Google Scholar 

  64. Li, L., Lanteri, S., Perrussel, R.: A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3D time-harmonic Maxwell’s equations. J. Comput. Phys. 256, 563–581 (2014). https://doi.org/10.1016/j.jcp.2013.09.003

    Article  MathSciNet  Google Scholar 

  65. Soon, S.-C., Cockburn, B., Stolarski, H.K.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Meth. Eng. 80(8), 1058–1092 (2009)

    Article  MathSciNet  Google Scholar 

  66. Cockburn, B., Shi, K.: Superconvergent HDG methods for linear elasticity with weakly symmetric stresses. IMA J. Numer. Anal. 33(3), 747–770 (2013). https://doi.org/10.1093/imanum/drs020

    Article  MathSciNet  Google Scholar 

  67. Fu, G., Cockburn, B., Stolarski, H.: Analysis of an HDG method for linear elasticity. Int. J. Numer. Meth. Eng. 102(3–4), 551–575 (2015)

    Article  MathSciNet  Google Scholar 

  68. Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87(309), 69–93 (2018)

    Article  MathSciNet  Google Scholar 

  69. Sánchez, M.A., Cockburn, B., Nguyen, N.C., Peraire, J.: Symplectic Hamiltonian finite element methods for linear elastodynamics. Comput. Methods Appl. Mech. Eng. 381, 113843 (2021). https://doi.org/10.1016/j.cma.2021.113843

    Article  MathSciNet  Google Scholar 

  70. Cockburn, B., Shen, J.: An algorithm for stabilizing hybridizable discontinuous Galerkin methods for nonlinear elasticity. Results Appl. Math. 1, 100001 (2019). https://doi.org/10.1016/j.rinam.2019.01.001

    Article  MathSciNet  Google Scholar 

  71. Fernandez, P., Christophe, A., Terrana, S., Nguyen, N.C., Peraire, J.: Hybridized discontinuous Galerkin methods for wave propagation. J. Sci. Comput. 77(3), 1566–1604 (2018). https://doi.org/10.1007/s10915-018-0811-x

    Article  MathSciNet  Google Scholar 

  72. Kabaria, H., Lew, A., Cockburn, B.: A hybridizable discontinuous Galerkin formulation for non-linear elasticity. Comput. Methods Appl. Mech. Eng. 283, 303–329 (2015)

    Article  MathSciNet  Google Scholar 

  73. Terrana, S., Nguyen, N.C., Bonet, J., Peraire, J.: A hybridizable discontinuous Galerkin method for both thin and 3D nonlinear elastic structures. Comput. Methods Appl. Mech. Eng. 352, 561–585 (2019). https://doi.org/10.1016/J.CMA.2019.04.029

    Article  MathSciNet  Google Scholar 

  74. Bai, Y., Fidkowski, K.J.: Continuous artificial-viscosity shock capturing for hybrid discontinuous Galerkin on adapted meshes. AIAA J. 60(10), 5678–5691 (2022). https://doi.org/10.2514/1.J061783

    Article  Google Scholar 

  75. Barter, G.E., Darmofal, D.L.: Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation. J. Comput. Phys. 229(5), 1810–1827 (2010). https://doi.org/10.1016/j.jcp.2009.11.010

    Article  MathSciNet  Google Scholar 

  76. Ching, E.J., Lv, Y., Gnoffo, P., Barnhardt, M., Ihme, M.: Shock capturing for discontinuous Galerkin methods with application to predicting heat transfer in hypersonic flows. J. Comput. Phys. 376, 54–75 (2019). https://doi.org/10.1016/j.jcp.2018.09.016

    Article  MathSciNet  Google Scholar 

  77. Nguyen, N. C., Perairey, J.: An adaptive shock-capturing HDG method for compressible flows. In: 20th AIAA computational fluid dynamics conference 2011, American Institute of Aeronautics and Astronautics, Reston, Virigina, 2011, pp. AIAA 2011–3060. https://doi.org/10.2514/6.2011-3060. http://arc.aiaa.org/doi/abs/10.2514/6.2011-3060

  78. Moro, D., Nguyen, N.C., Peraire, J.: Dilation-based shock capturing for high-order methods. Int. J. Numer. Meth. Fluids 82(7), 398–416 (2016). https://doi.org/10.1002/fld.4223

    Article  MathSciNet  Google Scholar 

  79. Persson, P. O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: Collection of Technical Papers-44th AIAA Aerospace Sciences Meeting, Vol. 2, pp. 1408–1420. Reno, Neveda (2006). https://doi.org/10.2514/6.2006-112

  80. Persson, P. O.: Shock capturing for high-order discontinuous Galerkin simulation of transient flow problems. In: 21st AIAA computational fluid dynamics conference, p. 3061. San Diego, CA (2013). https://doi.org/10.2514/6.2013-3061

Download references

Funding

This work was supported by the United States Department of Energy under contract DE-NA0003965, the National Science Foundation under grant number NSF-PHY-2028125, the Air Force Office of Scientific Research under Grant No. FA9550-22-1-0356, and the MIT Portugal program under the seed grant number 6950138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Cuong Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.C., Peraire, J. Hybridizable Discontinuous Galerkin Methods for the Two-Dimensional Monge–Ampère Equation. J Sci Comput 100, 44 (2024). https://doi.org/10.1007/s10915-024-02604-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02604-3

Keywords

Navigation