Log in

Asymptotically Compatible Energy and Dissipation Law of the Nonuniform L2-\(1_{\sigma }\) Scheme for Time Fractional Allen–Cahn Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We build an asymptotically compatible energy of the variable-step L2-\(1_{\sigma }\) scheme for the time-fractional Allen–Cahn model with the Caputo’s fractional derivative of order \(\alpha \in (0,1)\), under a weak step-ratio constraint \(\tau _k/\tau _{k-1}\ge r_{\star }(\alpha )\) for \(k\ge 2\), where \(\tau _k\) is the k-th time-step size and \(r_{\star }(\alpha )\in (0.3865,0.4037)\) for \(\alpha \in (0,1)\). It provides a positive answer to the open problem in Liao et al. (J Comput Phys 414:109473, 2020), and, to the best of our knowledge, it is the first second-order nonuniform time-step** scheme to preserve both the maximum bound principle and the energy dissipation law of time-fractional Allen–Cahn model. The compatible discrete energy is constructed via a novel discrete gradient structure of the second-order L2-\(1_{\sigma }\) formula by a local-nonlocal splitting technique. It splits the discrete fractional derivative into two parts: one is a local term analogue to the trapezoid rule of the first derivative and the other is a nonlocal summation analogue to the L1 formula of Caputo derivative. Numerical examples with an adaptive time-step** strategy are provided to show the effectiveness of our scheme and the asymptotic properties of the associated modified energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility

All data generated or analysed during this study are included in this published article.

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  2. Allen, S., Cahn, J.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  3. Du, Q., Yang, J., Zhou, Z.: Time-fractional Allen–Cahn equations: analysis and numerical methods. J. Sci. Comput. 85, 11 (2020)

    Article  MathSciNet  Google Scholar 

  4. Feng, X., Prohl, A.: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94, 33–65 (2003)

    Article  MathSciNet  Google Scholar 

  5. Hou, D., Xu, C.: Highly efficient and energy dissipative schemes for time fractional Allen–Cahn equation. SIAM J. Sci. Comput. 43(5), A3305–A3327 (2021)

    Article  MathSciNet  Google Scholar 

  6. Hou, D., Zhu, H., Xu, C.: Highly efficient schemes for time-fractional Allen–Cahn equation using extended SAV approach. Numer. Algorithms 88, 1077–1108 (2021)

    Article  MathSciNet  Google Scholar 

  7. Hou, D., Xu, C.: A second order energy dissipative scheme for time fractional \(L^2\) gradient flows using SAV approach. J. Sci. Comput. 90(1), 1–22 (2022)

    Article  Google Scholar 

  8. Hou, T., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank–Nicolson scheme for fractional-in-space Allen–Cahn equations. J. Sci. Comput. 72(3), 1214–1231 (2017)

    Article  MathSciNet  Google Scholar 

  9. Huang, J., Yang, C., Wei, Y.: Parallel energy-stable solver for a coupled Allen–Cahn and Cahn–Hilliard system. SIAM J. Sci. Comput. 42, C294–C312 (2020)

    Article  MathSciNet  Google Scholar 

  10. Ji, B., Liao, H.-L., Zhang, L.: Simple maximum-principle preserving time-step** methods for time-fractional Allen–Cahn equation. Adv. Comput. Math. 46, 37 (2020)

    Article  MathSciNet  Google Scholar 

  11. Ji, B., Liao, H.-L., Gong, Y., Zhang, L.: Adaptive second-order Crank–Nicolson time-step** schemes for time fractional molecular beam epitaxial growth models. SIAM J. Sci. Comput. 42, B738–B760 (2020)

    Article  MathSciNet  Google Scholar 

  12. Ji, B., Zhu, X., Liao, H.-L.: Energy stability of variable-step L1-type schemes for time-fractional Cahn–Hilliard model. Commun. Math. Sci 21(7), 1767–1789 (2023)

    Article  MathSciNet  Google Scholar 

  13. Jiang, S., Zhang, J., Qian, Z., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  14. Karaa, S.: Positivity of discrete time-fractional operators with applications to phase-field equations. SIAM J. Numer. Anal. 59, 2040–2053 (2021)

    Article  MathSciNet  Google Scholar 

  15. Kopteva, N.: Error analysis for time-fractional semilinear parabolic equations using upper and lower solutions. SIAM J. Numer. Anal. 58, 2212–2234 (2020)

    Article  MathSciNet  Google Scholar 

  16. Kopteva, N., Meng, X.: Error analysis for a fractional-derivative parabolic problem on quasi-graded meshes using barrier functions. SIAM J. Numer. Anal. 58, 1217–1238 (2020)

    Article  MathSciNet  Google Scholar 

  17. Li, Z., Wang, H., Yang, D.: A space-time fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation. J. Comput. Phys. 347, 20–38 (2017)

    Article  MathSciNet  Google Scholar 

  18. Liao, H.-L., Liu, N., Zhao, X.: Asymptotically compatible energy of variable-step fractional BDF2 formula for time-fractional Cahn–Hilliard model. ar**v: 2210.12514v1 (2022)

  19. Liao, H.-L., McLean, W., Zhang, J.: A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)

    Article  MathSciNet  Google Scholar 

  20. Liao, H.-L., McLean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. Commun. Comput. Phys. 30(2), 567–601 (2021)

    Article  MathSciNet  Google Scholar 

  21. Liao, H.-L., Tang, T., Zhou, T.: A second-order and nonuniform time-step** maximum-principle preserving scheme for time-fractional Allen–Cahn equations. J. Comput. Phys. 414, 109473 (2020)

    Article  MathSciNet  Google Scholar 

  22. Liao, H.-L., Tang, T., Zhou, T.: An energy stable and maximum bound preserving scheme with variable time steps for time fractional Allen–Cahn equation. SIAM J. Sci. Comput. 43(5), A3503–A3526 (2021)

    Article  MathSciNet  Google Scholar 

  23. Liao, H.-L., Zhu, X., Wang, J.: An adaptive L1 time-step** scheme preserving a compatible energy law for the time-fractional Allen–Cahn equation. Numer. Math. Theor. Methods Appl. 15(4), 1128–1146 (2022)

    Article  Google Scholar 

  24. Liu, H., Cheng, A., Wang, H., Zhao, J.: Time-fractional Allen–Cahn and Cahn–Hilliard phase-field models and their numerical investigation. Comput. Math. Appl. 76, 1876–1892 (2018)

    Article  MathSciNet  Google Scholar 

  25. Quan, C., Tang, T., Wang, B., Yang, J.: A decreasing upper bound of energy for time-fractional phase-field equations. Commun. Comput. Phys. 33, 962–991 (2023)

    Article  MathSciNet  Google Scholar 

  26. Quan, C., Tang, T., Yang, J.: How to define dissipation-preserving energy for time-fractional phase-field equations. CSIAM Trans. Appl. Math. 1, 478–490 (2020)

    Article  Google Scholar 

  27. Quan, C., Wu, X.: Global-in-time \(H^1\)-stability convergence of L2–1\(_\sigma \) method on general nonuniform meshes for subdiffusion equation. J. Sci. Comput. 95, 59 (2023)

    Article  Google Scholar 

  28. Quan, C., Wu, X.: \(H^1\)-norm stability and convergence of an L2-type method on nonuniform meshes for subdiffusion equation. SIAM J. Numer. Anal. 61(5), 2106–2132 (2023)

    Article  MathSciNet  Google Scholar 

  29. Tang, T., Yu, H., Zhou, T.: On energy dissipation theory and numerical stability for time-fractional phase field equations. SIAM J. Sci. Comput. 41, A3757–A3778 (2019)

    Article  MathSciNet  Google Scholar 

  30. Zhang, Z., Qiao, Z.: An adaptive time-step** strategy for the Cahn–Hilliard equation. Commun. Comput. Phys. 11, 1261–1278 (2012)

    Article  MathSciNet  Google Scholar 

  31. Zhao, J., Chen, L., Wang, H.: On power law scaling dynamics for time-fractional phase field models during coarsening. Commun. Nonlinear Sci. 70, 257–270 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by NSF of China under Grant Number 12071216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-lin Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Human or Animal Rights

This article does not contain any studies involving animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Hl., Zhu, X. & Sun, H. Asymptotically Compatible Energy and Dissipation Law of the Nonuniform L2-\(1_{\sigma }\) Scheme for Time Fractional Allen–Cahn Model. J Sci Comput 99, 46 (2024). https://doi.org/10.1007/s10915-024-02515-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02515-3

Keywords

Mathematics Subject Classification

Navigation