Log in

Discontinuous Galerkin Method for the Interior Transmission Eigenvalue Problem in Inverse Scattering Theory

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we are devoted to design the discontinuous Galerkin method to discrete the non-selfadjoint and nonlinear interior transmission eigenvalue problem. Such eigenvalues determined from scattering data provide information about material properties of the scattering media and hence can be applied to target identification and nondestructive testing. The spectral approximation of the discontinuous Galerkin method is proved and the convergence of the approximate transmission eigenvalue is at order \(O(h^{2\ell })\)(\(\ell \ge 1\)), notably observing the convergence order at \(O(h^{2\ell -2})\)(\(\ell \ge 2\)) of the finite element method and the \(C^{0}\) interior penalty Galerkin method, and at \(O(h^{2\ell -1})\)(\(\ell \ge 1\)) of the virtual element method theoretically and numerically. Representative numerical examples are implemented to demonstrate the theoretical results, including the optimal convergence on the classical triangular mesh and the developed polygonal meshes, the influence of the penalty parameter in the scheme, transmission eigenvalues on the stratified media and the inverse spectral problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data during the current study are available on request.

References

  1. Aktosun, T., Gintides, D., Papanikolaou, V.: The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation. Inverse Prob. 27(11), 115004 (2011)

    MathSciNet  MATH  Google Scholar 

  2. An, J., Shen, J.: A spectral-element method for transmission eigenvalue problems. J. Sci. Comput. 57, 670–688 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Antonietti, P., Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Laplace eigenproblem. Comput. Methods Appl. Mech. Eng. 195, 3483–3503 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Babuška, I., Osborn, J.: Eigenvalue Problems. In: Handbook of Numerical Analysis, Vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

  5. Blum, H., Rannacher, R., Leis, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Methods Appl. Sci. 2, 556–581 (1980)

    MathSciNet  MATH  Google Scholar 

  6. Boffi, D.: Finite element approximation of eigenvalue problems. Acta Numer. 19, 1–120 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Brenner, S., Monk, P., Sun, J.: \({C}^{0}\) interior penalty Galerkin method for biharmonic eigenvalue problems. Lect. Notes Comput. Sci. Eng. 106, 3–15 (2015)

    MATH  Google Scholar 

  8. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. In: vol. 15 of Texts Appl. Math. Springer, New York (2008)

  9. Buffa, A., Houston, P., Perugia, I.: Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes. J. Comput. Appl. Math. 204, 317–333 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Buffa, A., Perugia, I.: Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44(5), 2198–2226 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Cakoni, F., Colton, D., Gintides, D.: The interior transmission eigenvalue problem. SIAM J. Math. Anal. 42(6), 2912–2921 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Cakoni, F., Colton, D., Haddar, H.: On the determination of Dirichlet or transmission eigenvalues from far field data. C. R. Acad. Sci. Paris Ser. I 348, 379–383 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Cakoni, F., Colton, D., Haddar, H.: Inverse Scattering Theory and Transmission Eigenvalues. In: Proceedings of the CBMS-NSF Regional Conference Series in Applied Mathematics 88. SIAM, Philadelphia (2016)

  14. Cakoni, F., Colton, D., Monk, P.: On the use of transmission eigenvalues to estimate the index of refraction from far field data. Inverse Prob. 23(2), 507–522 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42, 237–255 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Cakoni, F., Kress, R.: A boundary integral equation method for the transmission eigenvalue problem. Appl. Anal. 96(1), 23–38 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Cakoni, F., Monk, P., Sun, J.: Error analysis for the finite element approximation of transmission eigenvalues. Comput. Methods Appl. Math. 14(4), 419–427 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Camaño, J., Rodríguez, R., Venegas, P.: Convergence of a lowest-order finite element method for the transmission eigenvalue problem. Calcolo 55, 33 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York (2013)

    MATH  Google Scholar 

  20. Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Prob. 26, 045011 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation. Part 1: the problem of convergence. RAIRO Anal. Numer. 12, 97–112 (1978)

    MathSciNet  MATH  Google Scholar 

  22. Geng, H., Ji, X., Sun, J., Xu, L.: \({C}^{0}\)IP methods for the transmission eigenvalue problem. J. Sci. Comput. 68, 326–338 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Gintides, D., Pallikarakis, D.: A computational method for the inverse transmission eigenvalue problem. Inverse Prob. 29, 104010 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Gintides, D., Pallikarakis, N.: The inverse transmission eigenvalue problem for a discontinuous refractive index. Inverse Prob. 33(5), 055006 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Grisvard, P.: Singularities in Boundary Value Problems. Springer, Berlin (1985)

    MATH  Google Scholar 

  26. Gudi, T., Nataraj, N., Pani, A.: Mixed discontinuous Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 37, 139–161 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Han, J., Yang, Y., Bi, H.: A new multigrid finite element method for the transmission eigenvalue problems. Appl. Math. Comput. 292, 96–106 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Huang, R., Struthers, A., Sun, J., Zhang, R.: Recursive integral method for transmission eigenvalues. J. Comput. Phys. 327(15), 830–840 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Ji, X., Sun, J., Turner, T.: Algorithm 922: a mixed finite element method for Helmholtz transmission eigenvalues. ACM Trans. Math. Softw. 38(4), Art. 29 (2012)

  30. Ji, X., **, Y., **e, H.: Nonconforming finite element method for the transmission eigenvalue problem. Adv. Appl. Math. Mech. 9(1), 92–103 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Kirsch, A.: The denseness of the far field patterns for the transmission problem. IMA J. Appl. Math. 37, 213–226 (1986)

    MathSciNet  MATH  Google Scholar 

  32. Kleefeld, A.: A numerical method to compute interior transmission eigenvalues. Inverse Prob. 29(10), 104012 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Kozlov, V., Vassiliev, D., Mazya, V.: On sign variation and the absence of strong zeros of solutions of elliptic equations. Math. USSR-Izv. 34, 337–353 (1990)

    MathSciNet  Google Scholar 

  34. Meng, J., Mei, L.: The matrix domain and the spectra of a generalized difference operator. J. Math. Anal. Appl. 470, 1095–1107 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Meng, J., Mei, L.: Discontinuous Galerkin methods of the non-selfadjoint Steklov eigenvalue problem in inverse scattering. Appl. Math. Comput. 381, 125307 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Meng, J., Mei, L.: The optimal order convergence for the lowest order mixed finite element method of the biharmonic eigenvalue problem. J. Comput. Appl. Math. 402, 113783 (2022)

    MathSciNet  MATH  Google Scholar 

  37. Meng, J., Mei, L.: Virtual element method for the Helmholtz transmission eigenvalue problem of anisotropic media. Math. Models Methods Appl. Sci. 32(8), 1493–1529 (2022)

    MathSciNet  MATH  Google Scholar 

  38. Meng, J., Wang, G., Mei, L.: A lowest-order virtual element method for the Helmholtz transmission eigenvalue problem. Calcolo 58, 2 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Meng, J., Wang, G., Mei, L.: Mixed virtual element method for the Helmholtz transmission eigenvalue problem on polytopal meshes. IMA J. Numer. Anal. 43(3), 1685–1717 (2023)

    MathSciNet  MATH  Google Scholar 

  40. Mora, D., Velásquez, I.: A virtual element method for the transmission eigenvalue problem. Math. Models Methods Appl. Sci. 28(14), 2803–2831 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Mora, D., Velásquez, I.: Virtual elements for the transmission eigenvalue problem on polytopal meshes. SIAM J. Sci. Comput. 43(4), A2425–A2447 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Prudhomme, S., Pascal, F., Oden, J.: Review of error estimation for discontinuous Galerkin methods. TICAM Report, pp. 0–27 (2000)

  43. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)

    MATH  Google Scholar 

  44. Sun, J.: Estimation of transmission eigenvalues and the index of refraction from Cauchy date. Inverse Prob. 27, 015009 (2011)

    MATH  Google Scholar 

  45. Wang, L., **ong, C., Wu, H., Luo, F.: A priori and a posteriori analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems. Adv. Comput. Math. 45, 2623–2646 (2019)

    MathSciNet  MATH  Google Scholar 

  46. **, Y., Ji, X., Zhang, S.: A high accuracy nonconforming finite element scheme for Helmholtz transmission eigenvalue problem. J. Sci. Comput. 83, 67 (2020)

    MathSciNet  MATH  Google Scholar 

  47. **ong, C., Becker, R., Luo, F., Ma, X.: A priori and a posteriori error analysis for the mixed discontinuous Galerkin finite element approximations of the biharmonic problems. Numer. Methods Part. Differ. Equ. 33, 318–353 (2017)

    MathSciNet  MATH  Google Scholar 

  48. Yang, Y., Bi, H., Li, H., Han, J.: Mixed methods for the Helmholtz transmission eigenvalues. SIAM J. Sci. Comput. 38(3), A1383–A1403 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Yang, Y., Bi, H., Li, H., Han, J.: A \({C}^{0}\) IPG method and its error estimates for the Helmholtz transmission eigenvalue problem. J. Comput. Appl. Math. 326, 71–86 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Zeng, Y., Wang, F.: A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems. Appl. Math. 62, 243–267 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank the referee for his/her constructive comments and suggestions. The author thanks Dr.Yongchao Zhang from Northwestern University, **’an, China, for allowing us to use his DG codes. The work is supported by the China Scholarship Council (No.202106280167).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Meng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J. Discontinuous Galerkin Method for the Interior Transmission Eigenvalue Problem in Inverse Scattering Theory. J Sci Comput 96, 66 (2023). https://doi.org/10.1007/s10915-023-02290-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02290-7

Keywords

Mathematics Subject Classification

Navigation