Log in

A Bivariate Spline Method for Second Order Elliptic Equations in Non-divergence Form

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A bivariate spline method is developed to numerically solve second order elliptic partial differential equations in non-divergence form. The existence, uniqueness, stability as well as approximation properties of the discretized solution will be established by using the well-known Ladyzhenskaya–Babuska–Brezzi condition. Bivariate splines, discontinuous splines with smoothness constraints are used to implement the method. Computational results based on splines of various degrees are presented to demonstrate the effectiveness and efficiency of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adolfsson, V.: \(L^2\) integrability of second order derivatives for Poisson equations in nonsmooth domain. Math. Scand. 70, 146–160 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agranovich, M.S.: Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains, Springer Monographs in Mathematics. Springer, Cham (2015)

    Book  Google Scholar 

  3. Awanou, G.: Robustness of a spline element method with constraints. J. Sci. Comput. 36(3), 421–432 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Awanou, G.: Spline element method for Monge–Ampère equations. BIT 55(3), 625–646 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Awanou, G., Lai, M.-J., Wenston, P.: The multivariate spline method for scattered data fitting and numerical solution of partial differential equations. In: Chen, G., Lai, M.J. (eds.) Wavelets and splines: Athens 2005, pp. 24–74. Nashboro Press, Brentwood (2006)

    Google Scholar 

  6. Babuska, I.: The finite element method with Lagrange multipliers. Numer. Math. 20, 179–192 (1973)

    Article  MATH  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  8. Brezzi, F.: On the existence, uniqueness, and approximation of saddle point problems arising from Lagrange multipliers. RAIRO 8, 129–151 (1974)

    MATH  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, New York (1978)

    MATH  Google Scholar 

  10. Evens, L.: Partial Differ. Equ. American Mathematical Society, Providence (1998)

    Google Scholar 

  11. Farin, G.: Triangular Bernstein–Bézier patches. Comput. Aided Geom. Des. 3(2), 83–127 (1986)

    Article  Google Scholar 

  12. Floater, M., Lai, M.-J.: Polygonal spline spaces and the numerical solution of the Poisson equation. SIAM J. Numer. Anal. 54, 797–824 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1998)

    MATH  Google Scholar 

  15. Gutierrez, J., Lai, M.-J., Slavov, G.: Bivariate spline solution of time dependent nonlinear PDE for a population density over irregular domains. Math. Biosci. 270, 263–277 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, X., Han, D., Lai, M.-J.: Bivariate splines of various degrees for numerical solution of PDE. SIAM J. Sci. Comput. 29, 1338–1354 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kellogg, O.D.: On bounded polynomials in several variables. Math. Z. 27, 55–64 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lai, M.-J., Schumaker, L.L.: Spline Functions Over Triangulations. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  19. Lai, M.-J., Wenston, P.: Bivariate splines for fluid flows. Comput. Fluids 33, 1047–1073 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maugeri, A., Palagachev, D.K., Softova, L.G.: Elliptic and Parabolic Equations with Discontinuous Coefficients. Mathematical Research, vol. 109. Wiley-VCH Verlag, Berlin (2000)

    Book  MATH  Google Scholar 

  21. Mitrea, Dorina, Mitrea, Marius, Yan, Lixin: Boundary value problems for the Laplacian in convex and semiconvex domains. J. Funct. Anal. 258, 2507–2585 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schumaker, L.L.: Spline Functions: Computational Methods. SIAM Publication, Philadelphia (2015)

    Book  MATH  Google Scholar 

  23. Smears, I.: Nonoverlap** domain decomposition preconditioners for discontinuous Galerkin approximations of Hamilton–Jacobi–Bellman equations. J. Sci. Comput. (2017). doi:10.1007/s10915-017-0428-5

  24. Smears, I., Süli, E.: Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordes coefficients. SIAM J. Numer. Anal. 51(4), 2088–2106 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Smears, I., Süli, E.: Discontinuous Galerkin finite element approximation of Hamilton–Jacobi–Bellman equations with Cordes coefficients. SIAM J. Numer. Anal. 52(2), 993–1016 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Smears, I., Süli, E.: Discontinuous Galerkin finite element methods for time-dependent Hamilton–Jacobi–Bellman equations with Cordes coefficients. Numer. Math. 133(1), 141–176 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Süli, E.: A brief excursion into the mathematical theory of mixed finite element methods. In: Lecture Notes. University of Oxford (2013)

  28. Wang, C., Wang, J.: An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes. Comput. Math. Appl. 68(12, part B), 2314–2330 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, C., Wang, J.: A primal–dual weak Galerkin finite element method for second order elliptic equations in non-divergence form, in revision, submitted to Math. Comput. ar**v:1510.03488v1

  30. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comput. 83, 2101–2126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunmei Wang.

Additional information

The research of Ming-Jun Lai was partially supported by Simons collaboration Grant 280646 and the National Science Foundation Award DMS-1521537. The research of Chunmei Wang was partially supported by National Science Foundation Awards DMS-1522586 and DMS-1648171.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, MJ., Wang, C. A Bivariate Spline Method for Second Order Elliptic Equations in Non-divergence Form. J Sci Comput 75, 803–829 (2018). https://doi.org/10.1007/s10915-017-0562-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0562-0

Keywords

Mathematics Subject Classification

Navigation