Log in

A close-up to the bond-breaking and bond-forming using information theory

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this work, we analyzed the chemical reaction, \(\textrm{CH}_{4} + \textrm{H}^- \longrightarrow \textrm{CH}_{4} + \textrm{H}^{-}\), using the concept of information channel, which consists in to quantify the amount of information that the system can transfer and receive, to carry out such measures, we used Shannon’s entropy defined in position and momentum spaces, the interpretation of the results obtained was also completed by the analysis of Fisher’s entropy in position and momentum spaces; our results, permitted to analyze with certain detail how are carried out the process of bond-forming and bond-breaking of the reaction \(\textrm{CH}_{4} + \textrm{H}^-\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd edn. (Cornell University Press, Ithaca, 1960), p. 4

  2. W. Davidson, Nature 4296, 353 (1952)

    Google Scholar 

  3. F.F. Kluge, D.F. Larder, J. Chem. Educ. 48(5), 289 (1971)

    Article  Google Scholar 

  4. I. Hargittai, Struct. Chem. 22, 243 (2011)

    Article  CAS  Google Scholar 

  5. P.G. Mezey, Mol. Phys. 96(2), 169 (1999)

    Article  CAS  Google Scholar 

  6. P.G. Mezey, J. Math. Chem. 30, 299 (2001)

    Article  CAS  Google Scholar 

  7. P.G. Mezey, J. Math. Chem. 45, 544 (2009)

    Article  CAS  Google Scholar 

  8. P.G. Mezey, J. Chem. Inf. Comput. Sci. 39, 224 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. R. Carbó-Dorca, E. Besalú, J. Mol. Struct. (Teochem). 451, 11 (1998)

    Article  Google Scholar 

  10. P. Bultinck, X. Gironés, R. Carbó-Dorca, Reviews in Computational Chemistry, vol. 21 (Wiley, New York, 2005), pp. 127–207

  11. R. Carbó, B. Calabuig, Int. J. Quantum Chem. 42, 1681 (1992)

    Article  Google Scholar 

  12. R. Carbó, B. Calabuig, Int. J. Quantum Chem. 42, 1696 (1992)

    Google Scholar 

  13. R. Carbó, J. Leyda, M. Arnau, Int. J. Quantum Chem. 17, 1185 (1980)

    Article  Google Scholar 

  14. R. Carbó, E. Sune, F. Lapena, B.J. Pérez, J. Biol. Phys. 14, 21 (1986)

    Article  Google Scholar 

  15. R. Carbó, L. Domingo, Int. J. Quantum Chem. 32, 517 (1987)

    Article  Google Scholar 

  16. R. Carbó, B. Calabuig, Comput. Phys. Commun. 55, 117 (1989)

    Article  Google Scholar 

  17. N. Flores-Gallegos, J. Math. Chem. 59, 1822 (2021)

    Article  CAS  Google Scholar 

  18. C.E. Shannon, Bell Syst. Tech. J. 27, 379–623 (1948)

    Article  Google Scholar 

  19. N.H. March, Electron Density Theory of Atoms and Molecules (Academic Press, Cambridge, 1992)

    Google Scholar 

  20. M. Hô, R.P. Sagar, J.M. Pérez-Jordá, V.H. Smith Jr., R.O. Esquivel, Chem. Phys. Lett. 219, 15 (1994)

    Article  Google Scholar 

  21. M. Hô, R.P. Sagar, V.H. Smith Jr., R.O. Esquivel, J. Phys. B 5149, 27 (1994)

    Google Scholar 

  22. R.O. Esquivel, A.L. Rodríguez, R.P. Sagar, M. Hô, V.H. Smith Jr., Phys. Rev. A 259, 54 (1996)

    Google Scholar 

  23. M. Hô, B.J. Clark, V.H. Smith Jr., D.F. Weaver, C. Gatti, R.P. Sagar, R.O. Esquivel, J. Chem. Phys. 112, 7572 (2000)

    Article  Google Scholar 

  24. R.P. Sagar, J.C. Ramŕez, R.O. Esquivel, Phys. Rev. A. 63, 022509–1 (2001)

    Article  Google Scholar 

  25. N.L. Guevara, R.P. Sagar, R.O. Esquivel, Phys. Rev. A. 012507–1, 67 (2003)

    Google Scholar 

  26. N. Flores-Gallegos, Chem. Phys. Lett. 650, 57 (2016)

    Article  CAS  Google Scholar 

  27. N. Flores-Gallegos, J. Theor. Comput. Chem. 16(6), 1750051 (2017)

    Article  CAS  Google Scholar 

  28. N. Flores-Gallegos, Chem. Phys. Lett. 720, 1 (2019)

    Article  CAS  Google Scholar 

  29. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989)

    Google Scholar 

  30. R.F. Nalewajski, P. Gurdek, J. Math. Chem. 49, 1226 (2011)

    Article  CAS  Google Scholar 

  31. R.F. Nalewajski, J. Math. Chem. 43, 780 (2007)

    Article  Google Scholar 

  32. R.F. Nalewajski, P. Gurdek, Struct. Chem. 23, 1383 (2012)

    Article  CAS  Google Scholar 

  33. R.F. Nalewajski, J. Math. Chem. 43, 265 (2006)

    Article  Google Scholar 

  34. R.F. Nalewajski, J. Math. Chem. 49, 2308 (2011)

    Article  CAS  Google Scholar 

  35. R.F. Nalewajski, J. Math. Chem. 49, 371 (2011)

    Article  CAS  Google Scholar 

  36. R.F. Nalewajski, J. Math. Chem. 52, 42 (2014)

    Article  CAS  Google Scholar 

  37. R.F. Nalewajski, J. Math. Chem. 52, 1292 (2014)

    Article  CAS  Google Scholar 

  38. R.F. Nalewajski, J. Math. Chem. 53, 1 (2015)

    Article  CAS  Google Scholar 

  39. D. Szczepanik, J. Mrozek, J. Math. Chem. 49, 562 (2011)

    Article  CAS  Google Scholar 

  40. N. Flores-Gallegos, J. Math. Chem. 60, 1405 (2022)

    Article  CAS  Google Scholar 

  41. I. Bialyniky-Birula, J. Mycelski, Commun. Math. Phys. 44, 129 (1975)

    Article  Google Scholar 

  42. R.A. Fisher, Proc. Camb. Philos. Soc. 22, 700 (1925)

    Article  Google Scholar 

  43. C.F. Weizsäcker, Z. Phys. 96, 341 (1935)

    Article  Google Scholar 

  44. C.H. Hodges, Can. J. Phys. 51, 1428 (1973)

    Article  Google Scholar 

  45. C.C. Shih, D.R. Murphy, W.-P. Wang, J. Chem. Phys. 73, 1340 (1980)

    Article  CAS  Google Scholar 

  46. D.R. Murphy, W.-P. Wang, J. Chem. Phys. 429, 72 (1980)

    Google Scholar 

  47. D.R. Murphy, Phys. Rev. A. 1682, 24 (1981)

    Google Scholar 

  48. J.C. Corchado, J.L. Bravo, J. Espinosa-Garcia, J. Chem. Phys. 130, 184314 (2009)

    Article  PubMed  Google Scholar 

  49. J. Espinosa-García, G. Nyman, J.C. Corchado, J. Chem. Phys. 130, 184345 (2009)

    Google Scholar 

  50. X. Zhang, B.J. Braams, J.M. Bowman, J. Chem. Phys. 124, 021104 (2006)

    Article  PubMed  Google Scholar 

  51. Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian Inc., Wallingford (2013)

  52. J.M. Pérez-Jordá, A.D. Becke, E. San-Fabian, J. Chem. Phys. 100, 6520 (1994)

    Article  Google Scholar 

  53. M. Kohout, DGrid, version 4.6, Radebeul (2011)

  54. R.O. Rodolfo, M. Molina-Espíritu, J.C. Angulo, J. Antolín, N. Flores-Gallegos, J.S. Dehesa, Mol. Phys. 109(19), 2353 (2011)

    Article  Google Scholar 

  55. S. López-Rosa, R.O. Esquivel, J.C. Angulo, J. Antolín, J.S. Dehesa, N. Flores-Gallegos, J. Chem. Theory Comput. 6, 145 (2010)

    Article  PubMed  Google Scholar 

  56. R.O. Esquivel, N. Flores-Gallegos, J.S. Dehesa, J.C. Angulo, J.A.S. López-Rosa, K.D. Sen, J. Phys. Chem. A. 114, 1906 (2010)

    Article  CAS  PubMed  Google Scholar 

  57. R.O. Esquivel, N. Flores-Gallegos, C. Iuga, E.M. Carrera, J.C. Angulo, J. Antolín, Phys. Lett. A. 374, 948 (2010)

    Article  CAS  Google Scholar 

  58. R.O. Esquivel, N. Flores-Gallegos, C. Iuga, E.M. Carrera, J.C. Angulo, J. Antolín, Theor. Chem. Acc. 124, 445 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the CONACyT, the PRODEP-SEP program for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Flores-Gallegos.

Ethics declarations

Conflict of interest

The author declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Gallegos, N. A close-up to the bond-breaking and bond-forming using information theory. J Math Chem 61, 723–735 (2023). https://doi.org/10.1007/s10910-022-01436-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-022-01436-6

Keywords

Navigation